You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conject...
Contains the proceedings of the 17th Workshop and International Conference on Representations of Algebras (ICRA 2016), held in August 2016, at Syracuse University. This volume includes three survey articles based on short courses in the areas of commutative algebraic groups, modular group representation theory, and thick tensor ideals of bounded derived categories.
Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the
This volume contains the proceedings of the conference on Formal and Analytic Solutions of Diff. Equations, held from June 28–July 2, 2021, and hosted by University of Alcalá, Alcalá de Henares, Spain. The manuscripts cover recent advances in the study of formal and analytic solutions of different kinds of equations such as ordinary differential equations, difference equations, $q$-difference equations, partial differential equations, moment differential equations, etc. Also discussed are related topics such as summability of formal solutions and the asymptotic study of their solutions. The volume is intended not only for researchers in this field of knowledge but also for students who aim to acquire new techniques and learn recent results.
This volume is a collection of chapters that present several key principles and theories, as well as their potential uses in the development of mathematical models in areas like waves, thermodynamic, electromagnetics, fluid dynamics, and catastrophes. The techniques and methodologies used in this book, on the other hand, should have a long-term impact and be applicable to a wide range of different topics of study and research. Each chapter should also help readers in gaining a better knowledge of the underlying and connected concepts. The companion volume (Contemporary Mathematics, Volume 787) is devoted to theory and application.
This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some non-classical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form.
Stochastic resonance is a phenomenon arising in a wide spectrum of areas in the sciences ranging from physics through neuroscience to chemistry and biology. This book presents a mathematical approach to stochastic resonance which is based on a large deviations principle (LDP) for randomly perturbed dynamical systems with a weak inhomogeneity given by an exogenous periodicity of small frequency. Resonance, the optimal tuning between period length and noise amplitude, is explained by optimizing the LDP's rate function. The authors show that not all physical measures of tuning quality are robust with respect to dimension reduction. They propose measures of tuning quality based on exponential tr...
This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.
Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory. Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wireless communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory. Topics...
This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.