You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
First published in 1971, this highly popular text is devoted to the interdisciplinary area of critical phenomena, with an emphasis on liquid-gas and ferromagnetic transitions. Advanced undergraduate and graduate students in thermodynamics, statistical mechanics, and solid state physics, as well as researchers in physics, mathematics, chemistry, and materials science, will welcome this paperback edition of Stanley's acclaimed text.
This book concerns the use of concepts from statistical physics in the description of financial systems. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully developed turbulent fluids. These concepts are then applied to financial time series. The authors also present a stochastic model that displays several of the statistical properties observed in empirical data. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behaviour of economic systems without first having to work out a detailed microscopic description of the system. Physicists will find the application of statistical physics concepts to economic systems interesting. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems.
This book brings together two of the most exciting and widely studied subjects in modern physics: namely fractals and surfaces. To the community interested in the study of surfaces and interfaces, it brings the concept of fractals. To the community interested in the exciting field of fractals and their application, it demonstrates how these concepts may be used in the study of surfaces. The authors cover, in simple terms, the various methods and theories developed over the past ten years to study surface growth. They describe how one can use fractal concepts successfully to describe and predict the morphology resulting from various growth processes. Consequently, this book will appeal to physicists working in condensed matter physics and statistical mechanics, with an interest in fractals and their application. The first chapter of this important new text is available on the Cambridge Worldwide Web server: http://www.cup.cam.ac.uk/onlinepubs/Textbooks/textbookstop.html
Combining a statistical physics approach and rigorous econometric analysis, this new framework looks at growth and decline in business firms.
Do the movements of animals, including humans, follow patterns that can be described quantitatively by simple laws of motion? If so, then why? These questions have attracted the attention of scientists in many disciplines, and stimulated debates ranging from ecological matters to queries such as 'how can there be free will if one follows a law of motion?' This is the first book on this rapidly evolving subject, introducing random searches and foraging in a way that can be understood by readers without a previous background on the subject. It reviews theory as well as experiment, addresses open problems and perspectives, and discusses applications ranging from the colonization of Madagascar by Austronesians to the diffusion of genetically modified crops. The book will interest physicists working in the field of anomalous diffusion and movement ecology as well as ecologists already familiar with the concepts and methods of statistical physics.
From Newton to Mandelbrot takes the student on a tour of the most important landmarks of theoretical physics: classical, quantum, and statistical mechanics, relativity, electrodynamics, and, the most modern and exciting of all, the physics of fractals. The treatment is confined to the essentials of each area, and short computer programs, numerous problems, and beautiful color illustrations round off this unusual textbook. Ideally suited for a one-year course in theoretical physics it will also prove useful in preparing and revising for exams. This edition is corrected and includes a new appendix on elementary particle physics, answers to all short questions, and a diskette where a selection of executable programs exploring the fractal concept can be found.
This book presents a survey of the aspects of economic complexity, with a focus on foundational, interdisciplinary ideas. The long-awaited follow up to his 2011 volume Complex Evolutionary Dynamics in Urban-Regional and Ecologic-Economic Systems: From Catastrophe to Chaos and Beyond, this volume draws together the threads of Rosser’s earlier work on complexity theory and its wide applications in economics and an expanded list of related disciplines. The book begins with a full account of the broader categories of complexity in economics--dynamic, computational, hierarchical, and structural--before shifting to more detailed analysis. The next two chapters address problems associated with co...
Fractals and disordered systems have recently become the focus of intense interest in research. This book discusses in great detail the effects of disorder on mesoscopic scales (fractures, aggregates, colloids, surfaces and interfaces, glasses and polymers) and presents tools to describe them in mathematical language. A substantial part is devoted to the development of scaling theories based on fractal concepts. In ten chapters written by leading experts in the field, the reader is introduced to basic concepts and techniques in disordered systems and is led to the forefront of current research. This second edition has been substantially revised and updates the literature in this important field.
A deeply detailed discussion of fractals in biology, heterogeneous chemistry, polymers, and the earth sciences. Beginning with a general introduction to fractal geometry it continues with eight chapters on self-organized criticality, rough surfaces and interfaces, random walks, chemical reactions, and fractals in chemisty, biology, and medicine. A special chapter entitled "Computer Exploration of Fractals, Chaos, and Cooperativity" presents computer demonstrations of fractal models: 14 programs are included on a 3 1/2" MS-DOS diskette which run on any PC with at least 1 MB RAM and a EGA or VGA graphics card, 16 colors.
This volume comprises the proceedings of a NATO Advanced Study Institute held in Geilo, Norway, between 8-19 April 1985. Although the principal support for the meeting was provided by the NATO Committee for Scientific Affairs, a number of additional sponsors also contributed, allowing the assembly of an unusually large number of internationally rec ognized speakers. Additional funds were received from: EXXON Research and Engineering Co. IBM (Europe) Institutt for energiteknikk (NorwaY) Institut Lauge-Langevin (France) The Norwegian Research Council for Science and Humanities NORDITA (Denmark) The Norwegian Foreign Office The U. S. Army Research, Development and Standardization Group (Europe)...