You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This thesis presents significant advances in the understanding of the statistical properties of undulator radiation via two experiments carried out in the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab. The first experiment studied the turn-to-turn fluctuations in the power of the radiation generated by an electron bunch. The magnitude of these fluctuations depends on the 6D phase-space distribution of the electron bunch. The author presents the most complete theoretical description of this effect to date, and shows that it can be used to measure some electron bunch parameters (e.g. its size and divergence). Remarkably, the performance of this technique improves for small...
Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs
"Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the "Workshop on Beam Acceleration in Crystals and Nanostructures" (Fermilab, June 24-25, 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments"--Publisher's website.
An introductory text covering the important field of accelerator physics, including collision and beam dynamics, and engineering considerations for particle accelerators.
Synchrotron radiation is an important research tool for many areas of particle physics. This book explains the underlying physics which determines radiation properties, presenting them in easily applicable equations and figures. It describes the general radiation and its interaction with electrons. A valuable reference for scientists in the field.
Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world''s most able practitioners of the art and science of accelerators.The...
Muons are unstable elementary particles that are found in space, which can also be produced in particle accelerators to an intensity a billion times greater than that occurring naturally. This book describes the various applications of muons across the spectrum of the sciences and engineering. Scientific research using muons relies both on their basic properties as well as the microscopic interaction between them and surrounding particles such as nuclei, electrons, atoms and molecules. Examples of research that can be carried out using muons include muon catalysis for nuclear fusion, the application of muon spin probes to study microscopic magnetic properties of advanced materials, electron labelling to help in the understanding of electron transfer in proteins, and non-destructive element analysis of the human body. Cosmic ray muons can also be used to study the inner structure of volcanoes.
A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author—a noted expert in the field—reviews all possible types of continuous structural members and systems including strings, shafts, beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solution...
This book provides a comprehensive treatment of intensity dependent particle beam instabilities in accelerating rings. Written for researchers, the material is also suitable for use as a textbook in an advanced graduate course for students studying accelerator physics. The presentation starts with a brief review of the basic concept of wake potentials and coupling impedances in the vacuum chamber followed by a discussion on static and dynamic solutions of their effects on the particle beams. Special emphasis is placed separately on proton and electron machines. Other special topics of interest covered include Landau damping, BalakinOCoNovokhatskyOCoSmirnov damping, Sacherer''s integral equat...
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical r...