You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
As food producers, plants are constantly under attack by insects. Over the course of evolution, plants have not only developed a sophisticated defense apparatus but have also refined biochemical defense mechanisms to protect themselves, thereby maintaining the ecological balance. Plant-pest interactions induce an elaborate array of reactions involving the release of volatile compounds, effector and signaling molecules, trans-membrane proteins, and a variety of enzymes and hormones. This book offers a comprehensive guide to the strategies that plants employ against insects and other pests to ensure their continued survival. Addressing an important gap in the literature, it shares the latest findings in the field of plant–pest interactions for a broad audience. Providing an overview of the current state of knowledge on plant-pest interactions and their role in the genetic improvement of crops, it offers an essential guide for researchers and professionals in the fields of agriculture, plant pathology, entomology, cell biology, molecular biology and genetics.
Our immune system defends us against infection by employing multiple lines of defense. The relevance of the immune response in human health, disease prevention, and vaccinations becomes evident when the immune system is compromised as in the case of pathogenic infections or autoimmune diseases. The reader will gain a fundamental understanding of the essential principles of immunology, such as how our immune system recognizes/fights infectious agents, how our body differentiates between foreign and self-cells/molecules, and how the memory from previous infections aids in a faster and more effective immune response. The book is divided into 17 chapters, providing an overview of the immune syst...
This book comprehensively reviews current and novel treatment strategies against human parasites, including protozoans and helminths, using natural products. The initial chapters summarize the conventional treatment strategies and natural-product based therapeutics against these parasites. It discusses biochemical tools and techniques for the discovery of natural product based drugs against human parasites. The book also covers the ingenious and innovative mechanisms to achieve drug resistance by the protozoan parasites and strategies to overcome the resistance. It entails mechanistic insight into the modulation of host immune responses to delay or inhibit parasite clearance and explores hos...
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, migh...
Plants are an indispensable part of human and animal lives for nutrition and health. But pests, diseases and abiotic stress adversely affect crop yield, which ultimately places significant pressure on society to provide food to an increasing population. Moreover, it also encourages increased chemical/pesticide usage on crops, which we see in the biomagnification of toxic and hazardous compounds polluting water bodies, soil and the environment. This condition will continue to worsen in the future due to the resistance-acquiring ability of pathogens against plant defense and chemical treatments. In addition, environmental disturbances and consumer health issues are being reported more promptly...
The range of nanomaterial applications has expanded recently from catalysis, electronics, and filtration to therapeutics, diagnostics, agriculture, and food because of unique properties and potentials of different nanoparticles and nanomaterials. Research shows that these exquisite particles can interact with an organism at the cellular, physiological, biochemical, and molecular levels. However, our knowledge of how they affect these changes, selectively or generally, in diverse organism or ecosystems is very limited and far from satisfactory. Data indicate that the biological function largely depends on the shape, size, and surface characteristics of the nanoparticles used besides life cycle stages of an organism. Therefore, this compilation will focus on the body of work carried out by distinguished investigators using diverse nanomaterials and plant and animal species. This book includes specific case studies as well as general review articles highlighting aspects of multilayered interactions, and targets not only research and academic scholars but also the concerned industry and policy makers as well.
This book provides detailed concepts and information on principles and processes of signal analysis in pharmacovigilance along with case studies. It covers the fundamental concepts and principles of pharmacovigilance, emphasizing the need for robust signal detection and analysis methods. The book reviews the diverse array of databases and tools employed for signal detection, including electronic health records (EHRs), social media mining, claims data, and distributed data networks. In turn, the book discusses the application of molecular dynamics, molecular docking, and the use of the FDA Adverse Event Reporting System (FAERS) database in signal analysis. Toward the end, the book explores the identification, validation, and assessment of signals associated with vaccines. This book is useful for graduate, post-graduate students of pharmaceutical sciences, and scientists in pharmacology research and drug development.
Textiles and Their Use in Microbial Protection: Focus on COVID-19 and Other Viruses provides readers with vital information about disinfection mechanisms used in textile applications in the fight against dangerous microbes and viruses. KEY FEATURES: Introduces the basics of textile materials used for medical applications Features key information on virology, characterization, indication, and passivation of COVID-19 Describes UV, photocatalysis, photooxidation, application of TiO2, copper-based viral inhibition, and activated carbon Discusses antiviral finishes for the protection against SARS-CoV-2, particle penetration in dense cotton fabrics under swollen state, and the impact of moisture on face masks and their designs Aimed at textile and materials engineers as well as readers in medical fields, this text offers a comprehensive view of fundamentals and solutions in the use of textiles for microbial protection.
"COVID-19 and Omics Technologies" is a comprehensive, integrative assessment of recent information and knowledge collected on SARS-CoV-2 and COVID-19 during the pandemic based on omics technologies. It demonstrates how omics technologies could better investigate the infectious disease and propose solutions to the current concerns. The value of multi-omics technologies in understanding disease etiology and host response, discovering infection biomarkers and illness prediction, identifying vaccine candidates, discovering therapeutic targets, and tracing pathogen evolution is discussed in this book. These factors combine to make it a valuable resource to enhance understanding of both "Omics tec...