You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The study of free resolutions is a core and beautiful area in Commutative Algebra. The main goal of this book is to inspire the readers and develop their intuition about syzygies and Hilbert functions. Many examples are given in order to illustrate ideas and key concepts. A valuable feature of the book is the inclusion of open problems and conjectures; these provide a glimpse of exciting, and often challenging, research directions in the field. Three types of problems are presented: Conjectures, Problems, and Open-Ended Problems. The latter do not describe specific problems but point to interesting directions for exploration. The first part of the monograph contains basic background material on graded free resolutions. Further coverage of topics includes syzygies over a polynomial ring, resolutions over quotient rings, lex ideals and Hilbert functions, compression, resolutions of monomial ideals, and syzygies of toric ideals. With a clear and self-contained exposition this text is intended for advanced graduate students and postdoctorates; it will be also of interest to senior mathematicians.
This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.
This contributed volume brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Algebraic Combinatorics, Hyperplane Arrangements, Homological Algebra, and String Theory. The book aims to showcase the area, especially for the benefit of junior mathematicians and researchers who are new to the field; it will aid them in broadening their background and to gain a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
This contributed volume is a follow-up to the 2013 volume of the same title, published in honor of noted Algebraist David Eisenbud's 65th birthday. It brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Category Theory, Combinatorics, Computational Algebra, Homological Algebra, Hyperplane Arrangements, and Non-commutative Algebra. The book aims to showcase the area and aid junior mathematicians and researchers who are new to the field in broadening their background and gaining a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.
Our analysis adapts the robust energy method developed for the study of energy critical bubbles by Merle-Rapha¨el-Rodnianski, Rapha¨el-Rodnianski and Rapha¨el- Schweyer, the study of this issue for the supercritical semilinear heat equation done by Herrero-Vel´azquez, Matano-Merle and Mizoguchi, and the analogous result for the energy supercritical Schr¨odinger equation by Merle-Rapha¨el-Rodnianski.
The automorphisms of a two-generator free group F acting on the space of orientation-preserving isometric actions of F on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group on by polynomial automorphisms preserving the cubic polynomial and an area form on the level surfaces .