You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
In this book, not only are mathematical abstractions discussed in a lucid manner, but also several practical applications are given particularly for system identification, description and then efficient controls. The reader gets a feeling of the wide applicability of fractional calculus in the field of science and engineering. With this book, a starter can understand the concepts of this emerging field with a minimal effort and basic mathematics.
An oscillator is dedicated to the generation of signals. It is used in computers, telecoms, watchmaking, astronomy, and metrology. It can be a pendulum, an electronic oscillator based on quartz technology, an optoelectronic oscillator, or an atomic clock, depending on its application. Since water clocks of antiquity, mechanical clocks invented during the thirteenth century, and the discovery of piezoelectricity by Jacques and Pierre Curie in 1880, oscillators have made great progress. This book does not attempt to tell the story of oscillators, but rather provides an overview of particular oscillator structures through examples from mathematics to oscillators, and from the millimeter scale to the vibration of a building, focusing on recent developments, as we live in a time when technology and mathematical analysis play a vital role.
This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This sixth volume collects authoritative chapters covering several applications of fractional calculus in control theory, including fractional controllers, design methods and toolboxes, and a large number of engineering applications of control.
"Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of nonlinear dynamics in dynamical systems and deformable solids.
This book presents a simplified deliberation of fractional calculus, which will appeal not only to beginners, but also to various applied science mathematicians and engineering researchers. The text develops the ideas behind this new field of mathematics, beginning at the most elementary level, before discussing its actual applications in different areas of science and engineering. This book shows that the simple, classical laws based on Newtonian calculus, which work quite well under limiting and idealized conditions, are not of much use in describing the dynamics of actual systems. As such, the application of non-Newtonian, or generalized, calculus in the governing equations, allows the order of differentiation and integration to take on non-integer values.
This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.
"Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.