You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nešetřil is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at ICM 2010.
A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.
One of the important areas of contemporary combinatorics is Ramsey theory. Ramsey theory is basically the study of structure preserved under partitions. The general philosophy is reflected by its interdisciplinary character. The ideas of Ramsey theory are shared by logicians, set theorists and combinatorists, and have been successfully applied in other branches of mathematics. The whole subject is quickly developing and has some new and unexpected applications in areas as remote as functional analysis and theoretical computer science. This book is a homogeneous collection of research and survey articles by leading specialists. It surveys recent activity in this diverse subject and brings the reader up to the boundary of present knowledge. It covers virtually all main approaches to the subject and suggests various problems for individual research.
This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics. Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level and has been used for courses at Simon Fraser University (Vancouver), Charles University (Prague), ETH (Zurich), and UFRJ (Rio de Janeiro). The exercises vary in difficulty. The first few are usually intended to give the reader an opportunity to practice the concepts introduced in the chapter; the later ones explore related concepts, or even introduce new ones. For the harder exercises hints and references are provided. The authors are well known for their research in this area and the book will be invaluable to graduate students and researchers alike.
This collection of high-quality articles in the field of combinatorics, geometry, algebraic topology and theoretical computer science is a tribute to Jiří Matoušek, who passed away prematurely in March 2015. It is a collaborative effort by his colleagues and friends, who have paid particular attention to clarity of exposition – something Jirka would have approved of. The original research articles, surveys and expository articles, written by leading experts in their respective fields, map Jiří Matoušek’s numerous areas of mathematical interest.
An impressive collection of original research papers in discrete and computational geometry, contributed by many leading researchers in these fields, as a tribute to Jacob E. Goodman and Richard Pollack, two of the ‘founding fathers’ of the area, on the occasion of their 2/3 x 100 birthdays. The topics covered by the 41 papers provide professionals and graduate students with a comprehensive presentation of the state of the art in most aspects of discrete and computational geometry, including geometric algorithms, study of arrangements, geometric graph theory, quantitative and algorithmic real algebraic geometry, with important connections to algebraic geometry, convexity, polyhedral combinatorics, the theory of packing, covering, and tiling. The book serves as an invaluable source of reference in this discipline.
We show that every first-order property of graphs can be decided in almost linear time on every nowhere dense class of graphs. For graph classes closed under taking subgraphs, our result is optimal (under a standard complexity theoretic assumption): it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, parameterized by the length of the input formula, then C must be nowhere dense. Nowhere dense graph classes form a large variety of classes of sparse graphs including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes...
This book constitutes the refereed proceedings of the 7th Annual International Conference on Computing and Combinatorics, COCOON 2001, held in Guilin, China, in August 2001.The 50 revised full papers and 16 short papers presented were carefully reviewed and selected from 97 submissions. The papers are organized in topical sections on complexity theory, computational biology, computational geometry, data structures and algorithms, games and combinatorics, graph algorithms and complexity, graph drawing, graph theory, online algorithms, randomized and average-case algorithms, Steiner trees, systems algorithms and modeling, and computability.
In 1992, when Paul Erdos was awarded a Doctor Honoris Causa by Charles University in Prague, a small conference was held, bringing together a distin guished group of researchers with interests spanning a variety of fields related to Erdos' own work. At that gathering, the idea occurred to several of us that it might be quite appropriate at this point in Erdos' career to solicit a col lection of articles illustrating various aspects of Erdos' mathematical life and work. The response to our solicitation was immediate and overwhelming, and these volumes are the result. Regarding the organization, we found it convenient to arrange the papers into six chapters, each mirroring Erdos' holistic appr...
Many of the best researchers and writers in discrete mathematics come together in a volume inspired by Ron Graham.