You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The ideal textbook resource to support a one-semester capstone course in planetary processes for geoscience undergraduates.
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.
For many years, planetary science has been taught as part of the astronomy curriculum, from a very physics-based perspective, and from the framework of a tour of the Solar System - body by body. Over the past decades, however, spacecraft exploration and related laboratory research on extraterrestrial materials have given us a new understanding of planets and how they are shaped by geological processes. Based on a course taught at the University of Tennessee, Knoxville, this is the first textbook to focus on geologic processes, adopting a comparative approach that demonstrates the similarities and differences between planets, and the reasons for these. Profusely illustrated, and with a wealth of pedagogical features, this book provides an ideal capstone course for geoscience majors - bringing together aspects of mineralogy, petrology, geochemistry, volcanology, sedimentology, geomorphology, tectonics, geophysics and remote sensing.
This book tackles the most difficult and profound open questions about life and its origins from an information-based perspective.
A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging new textbook explains the wide variety of physical, chemical and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. They combine knowledge of the Solar System and the properties of extrasolar planets with astrophysical observations of ongoing star and planet formation, offering a comprehensive model for understanding the origin of planetary systems. The book concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.
Backscattered scanning electron microscopy (BSE) reveals the minerals, textures, and fabrics of sediments and rocks in much greater detail than is possible with conventional optical microscopy. Backscattered Scanning Electron Microscopy provides a concise summary of the BSE technique. This comprehensive guide uses abundant images to illustrate the type of information BSE yields and the application of the technique to the study of sediments and sedimentary rocks. The authors review the use of this petrographic technique on all the major sedimentary rock types, including sediment grains, sandstones, shales, carbonate rocks, rock varnish, and glauconite. They also describe image analysis techniques that allow quantification of backscattered scanning electron microscope images. Heavily illustrated and lucidly written, this book will provide researchers and graduate students with the most current research on this important geological tool.