You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation...
Dear Friends, It seems like it was only yesterday that we drove the last of you to the airport. The memories and the spirit of the Scientific Detectors for Astronomy Workshop (SDW2002) remain fresh and strong. For us, this was a very special event, a great gathering of what may be one of the friendliest and most cooperative technical communities on our little planet. We have tried to capture the spirit of the Workshop in these Proceedings and we hope you are able to relive your week in Hawaii. For those readers who did not attend, we invite you into this community. As you probably noticed, there is a new name on the cover: Jenna Beletic was the ace up our sleeve for these Proceedings. As a s...
This book presents gravitational lensing as an essential tool in astrophysics for tracking dark matter at all scales in the Universe.
During the first decades after Einstein had developed his Theory of General Relativity, the main effort was to understand the theory and verify it experimentically. Meanwhile Genral Relativity is one of the experimentally best confirmed theories and has become a powerful tool for the investigation of cosmic processes where strong gravitational fields are involved. This book contains 16 contributions from well-known experts giving a broad overview for non-specialists who want to learn how to purely academic issues like gravitational wave detectors are now put into reality.
This volume documents the theoretical and observational results and arguments in favour of (or against) the most preferred models of structure formation. New observational results of the large scale distribution of matter are confronted with recent theories on the origin and evolution of structure in the universe.
The book reviews the present status of understanding the nature of the most luminous objects in the Universe, connected with supermassive black holes and supermassive stars, clusters of galaxies and ultraluminous galaxies, sources of gamma-ray bursts and relativistic jets. Leading experts give overviews of essential physical mechanisms involved, discuss formation and evolution of these objects as well as prospects for their use in cosmology, as probes of the intergalactic medium at high redshifts and as a tool to study the end of dark ages. The theoretical models are complemented by new exciting results from orbital and ground-based observatories such as Chandra, XMM-Newton, HST, SDSS, VLT, Keck, and many others.
A collection of personal essays in philosophy of science (physics, especially gravity), philosophy of information and communication technology, current social issues (emotional intelligence, COVID-19 pandemic, eugenics, intelligence), philosophy of art, and logic and philosophy of language. The distinction between falsification and refutation in the demarcation problem of Karl Popper Imre Lakatos - Heuristics and methodological tolerance Isaac Newton on the action at a distance in gravity: With or without God? Causal Loops in Time Travel The singularities as ontological limits of the general relativity Epistemology of Experimental Gravity - Scientific Rationality Philosophy of Blockchain Tec...
Since 1975, the triennial Marcel Grossmann Meetings have been organized in order to provide opportunities for discussing recent advances in gravitation, general relativity and relativisitic field theories, emphasizing mathematical foundations, physical predictions, and experimental tests.The proceedings of the Seventh Marcel Grossmann Meeting include the invited papers given at the plenary sessions, the summaries of the parallel sessions, the contributed papers presented at the parallel sessions, and the evening public lectures.The authors of these papers discuss many of the recent theoretical, observational, and experimental developments that have significant implications for the fields of physics, cosmology, and relativistic astrophysics.
The year 2005, which marked the 100th anniversary of the 'annus mirabilis', the year in which Albert Einstein published three of his most important scientific papers, was the perfect opportunity to review and to present the current scientific understanding of relativistic topics. This book provides an up-to-date reference on the theory of gravity, relativistic astrophysics and cosmology. It is a useful reference tool for both the expert and the new-comer in these fields.