You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book explores evidence-based practice in college science teaching. It is grounded in disciplinary education research by practicing scientists who have chosen to take Wieman’s (2014) challenge seriously, and to investigate claims about the efficacy of alternative strategies in college science teaching. In editing this book, we have chosen to showcase outstanding cases of exemplary practice supported by solid evidence, and to include practitioners who offer models of teaching and learning that meet the high standards of the scientific disciplines. Our intention is to let these distinguished scientists speak for themselves and to offer authentic guidance to those who seek models of excel...
Are you still using 20th century techniques to teach science to 21st century students? Update your practices as you learn about current theory and research with the authoritative Handbook of College Science Teaching. The Handbook offers models of teaching and learning that go beyond the typical lecture-laboratory format and provides rationales for updated practices in the college classroom. The 38 chapters, each written by experienced, award-wining science faculty, are organized into eight sections: attitudes and motivations; active learning; factors affecting learning; innovative teaching approaches; use for technology, for both teaching and student research; special challenges, such as tea...
Recent government publications like "Benchmarks for Scientific Literacy" and "Science for all Americans" have given teachers a mandate for improving science education in America. What we know about how learners construct meaning--particularly in the natural sciences--has undergone a virtual revolution in the past 25 years. Teachers, as well as researchers, are now grappling with how to better teach science, as well as how to assess whether students are learning. Assessing Science Understanding is a companion volume to Teaching Science for Understanding, and explores how to assess whether learning has taken place. The book discusses a range of promising new and practical tools for assessment including concept maps, vee diagrams, clinical interviews, problem sets, performance-based assessments, computer-based methods, visual and observational testing, portfolios, explanatory models, and national examinations.
The Handbook of Academic Learning provides a comprehensive resource for educational and cognitive psychologists, as well as educators themselves, on the mechanisms and processes of academic learning. Beginning with general themes that cross subject and age level, the book discusses what motivates students to learn and how knowledge can be made personal for better learning and remembering. Individual chapters identify proven effective teaching methods for the specific domains of math, reading, writing, science, and critical problem solving, how students learn within those domains, and how learning can be accurately assessed for given domains and age levels. The Handbook takes a constructivist...
Karen Gallas provides us with a window into children’s thinking about the world, enabling us to see how students build complex theories, identify important questions, and begin to enter the world of science, all within the naturalistic setting of the classroom. As the title suggests, this book treats classroom science as a particular type of discourse, with its own set of language and thinking practices. Gallas describes the content, structure, and practice of her child-centered approach, explains how the teacher’s role in Science Talks develops and changes over time, and discusses how the use of Science Talks could transform science instruction as a whole. The full transcripts of two such talks included in the appendix, in addition to many smaller quoted interchanges throughout the text, will fascinate readers.
Koslowski boldly criticizes many of the currently classic studies and musters a compelling set of arguments, backed by an exhaustive set of experiments carried out during the last decade.
Sponsored by the National Science Teachers Association, this handbook provides a uniquely comprehensive and current survey of the best reasearch in science eduction complied by the most renowned researchers. More than summaries of findings, the content provides an assessment of the significance of research, evaluates new developments, and examines current conflicts, controversies, and issues in the major science disciplines: biology, chemistry, physics, and earth science.
This book takes a fresh look at programs for advanced studies for high school students in the United States, with a particular focus on the Advanced Placement and the International Baccalaureate programs, and asks how advanced studies can be significantly improved in general. It also examines two of the core issues surrounding these programs: they can have a profound impact on other components of the education system and participation in the programs has become key to admission at selective institutions of higher education. By looking at what could enhance the quality of high school advanced study programs as well as what precedes and comes after these programs, this report provides teachers, parents, curriculum developers, administrators, college science and mathematics faculty, and the educational research community with a detailed assessment that can be used to guide change within advanced study programs.
Focusing on the teaching and learning of science concepts at the elementary and high school levels, this volume bridges the gap between state-of-the-art research and classroom practice in science education. The contributors -- science educators, cognitive scientists, and psychologists -- draw clear connections between theory, research, and instructional application, with the ultimate goal of improving science teachers' effectiveness in the classroom. Toward this end, explicit models, illustrations, and examples drawn from actual science classes are included.