You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Contains lectures presented at the Courant Institute's Mathematical Finance Seminar.
This book contains lectures delivered at the celebrated Seminar in Mathematical Finance at the Courant Institute. The lecturers and presenters of papers are prominent researchers and practitioners in the field of quantitative financial modeling. Most are faculty members at leading universities or Wall Street practitioners.The lectures deal with the emerging science of pricing and hedging derivative securities and, more generally, managing financial risk. Specific articles concern topics such as option theory, dynamic hedging, interest-rate modeling, portfolio theory, price forecasting using statistical methods, etc.
Volatility underpins financial markets by encapsulating uncertainty about prices, individual behaviors, and decisions and has traditionally been modeled as a semimartingale, with consequent scaling properties. The mathematical description of the volatility process has been an active topic of research for decades; however, driven by empirical estimates of the scaling behavior of volatility, a new paradigm has emerged, whereby paths of volatility are rougher than those of semimartingales. According to this perspective, volatility behaves essentially as a fractional Brownian motion with a small Hurst parameter. The first book to offer a comprehensive exploration of the subject, Rough Volatility...
Financial risk management has become a popular practice amongst financial institutions to protect against the adverse effects of uncertainty caused by fluctuations in interest rates, exchange rates, commodity prices, and equity prices. New financial instruments and mathematical techniques are continuously developed and introduced in financial practice. These techniques are being used by an increasing number of firms, traders and financial risk managers across various industries. Risk and Financial Management: Mathematical and Computational Methods confronts the many issues and controversies, and explains the fundamental concepts that underpin financial risk management. Provides a comprehensi...
Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability.
This book presents the works and research findings of physicists, economists, mathematicians, statisticians, and financial engineers who have undertaken data-driven modelling of market dynamics and other empirical studies in the field of Econophysics. During recent decades, the financial market landscape has changed dramatically with the deregulation of markets and the growing complexity of products. The ever-increasing speed and decreasing costs of computational power and networks have led to the emergence of huge databases. The availability of these data should permit the development of models that are better founded empirically, and econophysicists have accordingly been advocating that on...
Praise for The Volatility Surface "I'm thrilled by the appearance of Jim Gatheral's new book The Volatility Surface. The literature on stochastic volatility is vast, but difficult to penetrate and use. Gatheral's book, by contrast, is accessible and practical. It successfully charts a middle ground between specific examples and general models--achieving remarkable clarity without giving up sophistication, depth, or breadth." --Robert V. Kohn, Professor of Mathematics and Chair, Mathematical Finance Committee, Courant Institute of Mathematical Sciences, New York University "Concise yet comprehensive, equally attentive to both theory and phenomena, this book provides an unsurpassed account of ...