You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berl...
Serves as an introduction to the Kodaira-Spencer theory of deformations of complex structures. Based on lectures given by Kunihiko Kodaira at Stanford University in 1965-1966, this book gives the original proof of the Kodaira embedding theorem, showing that the restricted class of Kahler manifolds called Hodge manifolds is algebraic.
This is the translation from the Japanese textbook for the grade 10 course, "Basic Mathematics". The book covers the material which is a compulsory for Japanese high school students. The course comprises algebra (including quadratic functions, equations, and inequalities), trigonometric functions, and plane coordinate geometry.
This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from C to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira's unique approach to basic questions on complex manifolds.
"This is the translation of the Japanese textbook for the grade 11 course, "Basic Analysis", which is one of three elective courses offered at this level in Japanese high schools. The book includes a thorough treatment of exponential, logarithmic, and trigonometric functions, progressions, and induction method, as well as an extensive introduction to differential and integral calculus."--Publisher.
Kunihiko Kodaira's influence in mathematics has been fundamental and international, and his efforts have helped lay the foundations of modern complex analysis. These three volumes contain Kodaira's written contributions, published in a large number of journals and books between 1937 and 1971. The volumes cover chronologically the major periods of Kodaira's mathematical concentration and reflect his collaboration with other prominent theoreticians. It was in the second period that Kodaira did his fundamental work on harmonic integrals. The third period is chiefly characterized by the application of harmonic integrals and of the theory of sheaves to algebraic geometry and to complex manifolds....
Kunihiko Kodaira's influence in mathematics has been fundamental and international, and his efforts have helped lay the foundations of modern complex analysis. These three volumes contain Kodaira's written contributions, published in a large number of journals and books between 1937 and 1971. The volumes cover chronologically the major periods of Kodaira's mathematical concentration and reflect his collaboration with other prominent theoreticians. Thus they begin with early works that discuss the application of Hilbert space methods to differential equations, and the use of elementary solutions to prove regularity theorems for strongly elliptic systems of partial differential equations. Orig...
"This is the translation from the Japanese textbook for the grade 11 course, "General Mathematics". It is part of the easier of the three elective courses in mathematics offered at this level and is taken by about 40% of students. The book covers basic notions of probability and statistics, vectors, exponential, logarithmic, and trigonometric functions, and an introduction to differentiation and integration."--Publisher.
Kunihiko Kodaira's influence in mathematics has been fundamental and international, and his efforts have helped lay the foundations of modern complex analysis. These three volumes contain Kodaira's written contributions, published in a large number of journals and books between 1937 and 1971. The volumes cover chronologically the major periods of Kodaira's mathematical concentration and reflect his collaboration with other prominent theoreticians. The next major period, the classification of compact, complex analytic surfaces, forms the subject of Volume III and is a natural sequel to the papers on variation of complex structure. Originally published in 1975. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.