You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume of the Handbook on the Physics and Chemistry of Rare Earth begins with a Dedication to late Professor LeRoy Eyring who had been a committed co-editor of the first 32 volumes of this series. This is followed by four chapters, the first two pertaining to solid state physics and materials science, while the last two chapters describe organic (and inorganic) reactions mediated by tetravalent cerium-based oxidants and by divalent samarium-based reductants. Chapter 227 is devoted to the description of the crystal chemistry and physical properties of rare-earth bismuthides, a class of compounds showing large similarities with the rare-earth antimonides previously reviewed in volume 33 o...
Binary Rare Earth Oxides is the first book in the field of rare earth oxides that provides coverage from the basic science through to recent advances. This book introduces the unique characteristics of the binary rare earth oxides with their chemistry, physics and applications. It provides a comprehensive review of all the characteristics of rare earth oxides, essential for scientists and engineers involved with rare earths, oxides, inorganic materials, ceramics, and structures. The binary rare earth oxides bring us a variety of interesting characteristics. Understanding their fundamental mechanisms builds a bridge between solid-state chemistry and materials science. The book begins with a b...
Science and Technology of Rare Earth Materials reviews the important aspects of the science and technology of rare earth materials, covering the entire spectrum from occurrence to extraction and purification, phase relationships, electronic structure, and applications. This book is organized into five sections encompassing 19 chapters. The occurrence, extraction, and production of rare earths are discussed in the first section, followed by purification methods employed for rare earths, together with the role of impurities on their behavior. The phase relations among the rare earth alloys, including a particular reference to the technologically important rare earth-cobalt alloys, and phase re...
In the search for new functional materials, a clear understanding about the relationship between the physical properties and the atomic-scale structure of materials is needed. Here, the authors provide graduate students and scientists with an in-depth account of the evolutionary behavior of oxide functional materials within specific structural systems, discussing the intrinsic connections among these different structural systems. Over 300 illustrations and key appendices support the text.
When the author began working on phosphors based on rare-earth elements, he lacked an introductory textbook that explained the fundamental chemistry, basic optical properties, and magnetic characteristics of lanthanide elements. This book provides a concise overview of the rare-earth elements and is divided into two parts. In the first part, the reader receives an overview of solid-state chemistry and fundamental physical properties of these elements. Key topics of the first part include the separation chemistry of lanthanides, their chemical behaviour and physical properties. Then relevant compound classes are illustrated, crystal structures are systematically explained. The second part focuses on the optical and magnetic properties on relevant examples, also discussing many applications. Students and researchers new to the topic of "Rare-Earth Elements" receive a comprehensive introduction to understand basic optical and magnetic properties and incentives for deeper studies.
Phase Diagrams: Materials Science and Technology, Volume V is a six-chapter text that covers the use of phase diagrams in the understanding and development of inorganic materials. This volume first examines the atomistic understanding of the geometry of phase diagrams and the thermodynamic parameters on which the diagrams are based, as well as the relations of diagrams to crystal chemistry. The topics are followed by discussions on the most important thermodynamic theories of nonstoichiometry in binary oxide systems and the theories of spinodal decomposition that are relevant to crystalline nonmetals, especially to mixed crystalline oxides. Other chapters explore the phase equilibrium relati...
This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical micr...
The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content...