Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

A Concrete Introduction to Higher Algebra
  • Language: en
  • Pages: 540

A Concrete Introduction to Higher Algebra

An informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials, with much emphasis placed on congruence classes leading the way to finite groups and finite fields. New examples and theory are integrated in a well-motivated fashion and made relevant by many applications -- to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises, ranging from routine examples to extensions of theory, are scattered throughout the book, with hints and answers for many of them included in an appendix.

A Concrete Introduction to Higher Algebra
  • Language: en
  • Pages: 348

A Concrete Introduction to Higher Algebra

This book is written as an introduction to higher algebra for students with a background of a year of calculus. The book developed out of a set of notes for a sophomore-junior level course at the State University of New York at Albany entitled Classical Algebra. In the 1950s and before, it was customary for the first course in algebra to be a course in the theory of equations, consisting of a study of polynomials over the complex, real, and rational numbers, and, to a lesser extent, linear algebra from the point of view of systems of equations. Abstract algebra, that is, the study of groups, rings, and fields, usually followed such a course. In recent years the theory of equations course has disappeared. Without it, students entering abstract algebra courses tend to lack the experience in the algebraic theory of the basic classical examples of the integers and polynomials necessary for understanding, and more importantly, for ap preciating the formalism. To meet this problem, several texts have recently appeared introducing algebra through number theory.

A Concrete Introduction to Higher Algebra
  • Language: en
  • Pages: 556

A Concrete Introduction to Higher Algebra

An informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials, with much emphasis placed on congruence classes leading the way to finite groups and finite fields. New examples and theory are integrated in a well-motivated fashion and made relevant by many applications -- to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises, ranging from routine examples to extensions of theory, are scattered throughout the book, with hints and answers for many of them included in an appendix.

Hopf Algebras and Galois Module Theory
  • Language: en
  • Pages: 311

Hopf Algebras and Galois Module Theory

Hopf algebras have been shown to play a natural role in studying questions of integral module structure in extensions of local or global fields. This book surveys the state of the art in Hopf-Galois theory and Hopf-Galois module theory and can be viewed as a sequel to the first author's book, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, which was published in 2000. The book is divided into two parts. Part I is more algebraic and focuses on Hopf-Galois structures on Galois field extensions, as well as the connection between this topic and the theory of skew braces. Part II is more number theoretical and studies the application of Hopf algebras to questions of integral module structure in extensions of local or global fields. Graduate students and researchers with a general background in graduate-level algebra, algebraic number theory, and some familiarity with Hopf algebras will appreciate the overview of the current state of this exciting area and the suggestions for numerous avenues for further research and investigation.

Cryptology and Error Correction
  • Language: en
  • Pages: 353

Cryptology and Error Correction

  • Type: Book
  • -
  • Published: 2019-04-18
  • -
  • Publisher: Springer

This text presents a careful introduction to methods of cryptology and error correction in wide use throughout the world and the concepts of abstract algebra and number theory that are essential for understanding these methods. The objective is to provide a thorough understanding of RSA, Diffie–Hellman, and Blum–Goldwasser cryptosystems and Hamming and Reed–Solomon error correction: how they are constructed, how they are made to work efficiently, and also how they can be attacked. To reach that level of understanding requires and motivates many ideas found in a first course in abstract algebra—rings, fields, finite abelian groups, basic theory of numbers, computational number theory,...

Painlevé Transcendents
  • Language: en
  • Pages: 570

Painlevé Transcendents

At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomi...

Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications
  • Language: en
  • Pages: 538

Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications

This monograph, which grew out of a series of lectures delivered by Stephen Wiggins at the Fields Institute in early 1993, is concerned with the geometrical viewpoint of the global dynamics of nonlinear dynamical systems. With appropriate examples and concise explanations, Wiggins unites many different topics into one volume and makes a unique contribution to the field. Engineers, physicists, chemists, and mathematicians who work on issues related to the global dynamics of nonlinear dynamical systems will find these lectures very useful.

Number Theoretic Density and Logical Limit Laws
  • Language: en
  • Pages: 313

Number Theoretic Density and Logical Limit Laws

This book shows how a study of generating series (power series in the additive case and Dirichlet series in the multiplicative case), combined with structure theorems for the finite models of a sentence, lead to general and powerful results on limit laws, including 0 - 1 laws. The book is unique in its approach to giving a combined treatment of topics from additive as well as from multiplicative number theory, in the setting of abstract number systems, emphasizing the remarkable parallels in the two subjects. Much evidence is collected to support the thesis that local results in additive systems lift to global results in multiplicative systems. All necessary material is given to understand t...

Fundamental Algebraic Geometry
  • Language: en
  • Pages: 354

Fundamental Algebraic Geometry

Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.

Advances in Hopf Algebras
  • Language: en
  • Pages: 341

Advances in Hopf Algebras

  • Type: Book
  • -
  • Published: 2023-08-18
  • -
  • Publisher: CRC Press

"This remarkable reference covers topics such as quantum groups, Hopf Galois theory, actions and coactions of Hopf algebras, smash and crossed products, and the structure of cosemisimple Hopf algebras. "