Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to Hodge Theory
  • Language: en
  • Pages: 254

Introduction to Hodge Theory

Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects:$L2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry. The techniques employed cover a wide range of methods borrowed from the heart of mathem...

Handbook of Homotopy Theory
  • Language: en
  • Pages: 1142

Handbook of Homotopy Theory

  • Type: Book
  • -
  • Published: 2020-01-23
  • -
  • Publisher: CRC Press

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Fundamental Algebraic Geometry
  • Language: en
  • Pages: 354

Fundamental Algebraic Geometry

Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.

Geometric Aspects of Dwork Theory
  • Language: en
  • Pages: 1150

Geometric Aspects of Dwork Theory

This two-volume book collects the lectures given during the three months cycle of lectures held in Northern Italy between May and July of 2001 to commemorate Professor Bernard Dwork (1923 - 1998). It presents a wide-ranging overview of some of the most active areas of contemporary research in arithmetic algebraic geometry, with special emphasis on the geometric applications of the p-adic analytic techniques originating in Dwork's work, their connection to various recent cohomology theories and to modular forms. The two volumes contain both important new research and illuminating survey articles written by leading experts in the field. The book will provide an indispensable resource for all those wishing to approach the frontiers of research in arithmetic algebraic geometry.

Lectures on Logarithmic Algebraic Geometry
  • Language: en
  • Pages: 559

Lectures on Logarithmic Algebraic Geometry

A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.

Algebraic Geometry
  • Language: en
  • Pages: 521

Algebraic Geometry

description not available right now.

Renormalization and Effective Field Theory
  • Language: en
  • Pages: 251

Renormalization and Effective Field Theory

This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in “mathematics” itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. —Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalizatio...

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)
  • Language: en
  • Pages: 5393

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.

Steenrod Squares in Spectral Sequences
  • Language: en
  • Pages: 170

Steenrod Squares in Spectral Sequences

This book develops a general theory of Steenrod operations in spectral sequences. It gives special attention to the change-of-rings spectral sequence for the cohomology of an extension of Hopf algebras and to the Eilenberg-Moore spectral sequence for the cohomology of classifying spaces and homotopy orbit spaces. In treating the change-of-rings spectral sequence, the book develops from scratch the necessary properties of extensions of Hopf algebras and constructs the spectral sequence in a form particularly suited to the introduction of Steenrod squares. The resulting theory can be used effectively for the computation of the cohomology rings of groups and Hopf algebras, and of the Steenrod algebra in particular, and so should play a useful role in stable homotopy theory. Similarly the book offers a self-contained construction of the Eilenberg-Moore spectral sequence, in a form suitable for the introduction of Steenrod operations. The corresponding theory is an effective tool for the computation of t

The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles
  • Language: en
  • Pages: 412

The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles

In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.