You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
First Published in 1995. Routledge is an imprint of Taylor & Francis, an informa company.
How we reason with mathematical ideas continues to be a fascinating and challenging topic of research--particularly with the rapid and diverse developments in the field of cognitive science that have taken place in recent years. Because it draws on multiple disciplines, including psychology, philosophy, computer science, linguistics, and anthropology, cognitive science provides rich scope for addressing issues that are at the core of mathematical learning. Drawing upon the interdisciplinary nature of cognitive science, this book presents a broadened perspective on mathematics and mathematical reasoning. It represents a move away from the traditional notion of reasoning as "abstract" and "dis...
The Handbook of Research on STEM Education represents a groundbreaking and comprehensive synthesis of research and presentation of policy within the realm of science, technology, engineering, and mathematics (STEM) education. What distinguishes this Handbook from others is the nature of integration of the disciplines that is the founding premise for the work – all chapters in this book speak directly to the integration of STEM, rather than discussion of research within the individual content areas. The Handbook of Research on STEM Education explores the most pressing areas of STEM within an international context. Divided into six sections, the authors cover topics including: the nature of ...
Advances in Mathematics Education is a new and innovative book series published by Springer that builds on the success and the rich history of ZDM—The Inter- tional Journal on Mathematics Education (formerly known as Zentralblatt für - daktik der Mathematik). One characteristic of ZDM since its inception in 1969 has been the publication of themed issues that aim to bring the state-of-the-art on c- tral sub-domains within mathematics education. The published issues include a rich variety of topics and contributions that continue to be of relevance today. The newly established monograph series aims to integrate, synthesize and extend papers from previously published themed issues of importance today, by orienting these issues towards the future state of the art. The main idea is to move the ?eld forward with a book series that looks to the future by building on the past by carefully choosing viable ideas that can fruitfully mutate and inspire the next generations. Taking ins- ration from Henri Poincaré (1854–1912), who said “To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority.
This book brings together mathematics education research that makes a difference in both theory and practice - research that anticipates problems and needed knowledge before they become impediments to progress.
This book addresses engineering learning in early childhood, spanning ages 3 to 8 years. It explores why engineering experiences are important in young children's overall development and how engineering is a core component of early STEM learning, including how engineering education links and supports children's existing experiences in science, mathematics, and design and technology, both before school and in the early school years. Promoting STEM education across the school years is a key goal of many nations, with the realization that building STEM skills required by societies takes time and needs to begin as early as possible. Despite calls from national and international organisations, th...
This book conceptualizes the nature of mathematical modeling in the early grades from both teaching and learning perspectives. Mathematical modeling provides a unique opportunity to engage elementary students in the creative process of mathematizing their world. A diverse community of internationally known researchers and practitioners share studies that advance the field with respect to the following themes: The Nature of Mathematical Modeling in the Early Grades Content Knowledge and Pedagogy for Mathematical Modeling Student Experiences as Modelers Teacher Education and Professional Development in Modeling Experts in the field provide commentaries that extend and connect ideas presented across chapters. This book is an invaluable resource in illustrating what all young children can achieve with mathematical modeling and how we can support teachers and families in this important work.
The name of Zoltan P. Dienes (1916-) stands with those of Jean Piaget and Jerome Bruner as a legendary figure whose theories of learning have left a lasting impression on the field of mathematics education. Dienes' name is synonymous with the Multi-base blocks (also known as Dienes blocks) which he invented for the teaching of place value. He also is the inventor of Algebraic materials and logic blocks, which sowed the seeds of contemporary uses of manipulative materials in mathematics instruction. Dienes' place is unique in the field of mathematics education because of his theories on how mathematical structures can be taught from the early grades onwards using multiple embodiments through ...
Exploring Probability in School provides a new perspective into research on the teaching and learning of probability. It creates this perspective by recognizing and analysing the special challenges faced by teachers and learners in contemporary classrooms where probability has recently become a mainstream part of the curriculum from early childhood through high school. The authors of the book discuss the nature of probability, look at the meaning of probabilistic literacy, and examine student access to powerful ideas in probability during the elementary, middle, and high school years. Moreover, they assemble and analyse research-based pedagogical knowledge for teachers that can enhance the learning of probability throughout these school years. With the book’s rich application of probability research to classroom practice, it will not only be essential reading for researchers and graduate students involved in probability education; it will also capture the interest of educational policy makers, curriculum personnel, teacher educators, and teachers.
The purpose of this Open Access compendium, written by experienced researchers in mathematics education, is to serve as a resource for early career researchers in furthering their knowledge of the state of the field and disseminating their research through publishing. To accomplish this, the book is split into four sections: Empirical Methods, Important Mathematics Education Themes, Academic Writing and Academic Publishing, and a section Looking Ahead. The chapters are based on workshops that were presented in the Early Career Researcher Day at the 13th International Congress on Mathematical Education (ICME-13). The combination of presentations on methodological approaches and theoretical pe...