Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Real and Complex Singularities
  • Language: en
  • Pages: 363

Real and Complex Singularities

This volume collects papers presented at the eighth São Carlos Workshop on Real and Complex Singularities, held at the IML, Marseille, July 2004. Like the workshop, this collection establishes the state of the art and presents new trends, new ideas and new results in all of the branches of singularities. Real and Complex Singularities offers a useful summary of leading ideas in singularity theory, and inspiration for future research.

Real and Complex Singularities
  • Language: en
  • Pages: 338

Real and Complex Singularities

The Workshop on Real and Complex Singularities is held every other year at the Instituto de Ciencias Matematicas e de Computacao (Sao Carlos, Brazil) and brings together specialists in the vanguard of singularities and its applications. This volume contains articles contributed by participants of the seventh workshop.

Real and Complex Singularities
  • Language: en
  • Pages: 370

Real and Complex Singularities

This volume is a collection of papers presented at the XIII International Workshop on Real and Complex Singularities, held from July 27–August 8, 2014, in São Carlos, Brazil, in honor of María del Carmen Romero Fuster's 60th birthday. The volume contains the notes from two mini-courses taught during the workshop: on intersection homology by J.-P. Brasselet, and on non-isolated hypersurface singularities and Lê cycles by D. Massey. The remaining contributions are research articles which cover topics from the foundations of singularity theory (including classification theory and invariants) to topology of singular spaces (links of singularities and semi-algebraic sets), as well as applications to topology (cobordism and Lefschetz fibrations), dynamical systems (Morse-Bott functions) and differential geometry (affine geometry, Gauss-maps, caustics, frontals and non-Euclidean geometries). This book is published in cooperation with Real Sociedad Matemática Española (RSME)

An Alpine Anthology of Homotopy Theory
  • Language: en
  • Pages: 228

An Alpine Anthology of Homotopy Theory

The second Arolla conference on algebraic topology brought together specialists covering a wide range of homotopy theory and $K$-theory. These proceedings reflect both the variety of talks given at the conference and the diversity of promising research directions in homotopy theory. The articles contained in this volume include significant contributions to classical unstable homotopy theory, model category theory, equivariant homotopy theory, and the homotopy theory of fusionsystems, as well as to $K$-theory of both local fields and $C*$-algebras.

Chapel Hill Ergodic Theory Workshops
  • Language: en
  • Pages: 184

Chapel Hill Ergodic Theory Workshops

This volume grew out of two ergodic theory workshops held at the University of North Carolina at Chapel Hill. These events gave young researchers an introduction to active research areas and promoted interaction between young and established mathematicians. Included are research and survey articles devoted to various topics in ergodic theory. The book is suitable for graduate students and researchers interested in these and related areas.

Nonstandard Models of Arithmetic and Set Theory
  • Language: en
  • Pages: 184

Nonstandard Models of Arithmetic and Set Theory

This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.

Complex Analysis and Dynamical Systems
  • Language: en
  • Pages: 278

Complex Analysis and Dynamical Systems

This book contains contributions from the participants of an International Conference on Complex Analysis and Dynamical Systems. The papers collected here are devoted to various topics in complex analysis and dynamical systems, ranging from properties of holomorphic mappings to attractors in hyperbolic spaces. Overall, these selections provide an overview of activity in analysis at the outset of the twenty-first century. The book is suitable for graduate students and researchers in complex analysis and related problems of dynamics. With this volume, the Israel Mathematical Conference Proceedings are now published as a subseries of the AMS Contemporary Mathematics series.

Knots, Links, Spatial Graphs, and Algebraic Invariants
  • Language: en
  • Pages: 202

Knots, Links, Spatial Graphs, and Algebraic Invariants

This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.

Introduction to Lipschitz Geometry of Singularities
  • Language: en
  • Pages: 356

Introduction to Lipschitz Geometry of Singularities

This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves. While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category. The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.

The $p$-Harmonic Equation and Recent Advances in Analysis
  • Language: en
  • Pages: 226

The $p$-Harmonic Equation and Recent Advances in Analysis

Comprised of papers from the IIIrd Prairie Analysis Seminar held at Kansas State University, this book reflects the many directions of current research in harmonic analysis and partial differential equations. Included is the work of the distinguished main speaker, Tadeusz Iwaniec, his invited guests John Lewis and Juan Manfredi, and many other leading researchers. The main topic is the so-called p-harmonic equation, which is a family of nonlinear partial differential equations generalizing the usual Laplace equation. This study of p-harmonic equations touches upon many areas of analysis with deep relations to functional analysis, potential theory, and calculus of variations. The material is suitable for graduate students and research mathematicians interested in harmonic analysis and partial differential equations.