You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Biodiversity and Evolution includes chapters devoted to the evolution and biodiversity of organisms at the molecular level, based on the study of natural collections from the Museum of Natural History. The book starts with an epistemological and historical introduction and ends with a critical overview of the Anthropocene epoch. - Explores the study of natural collections of the Museum of Natural History - Examines evolution and biodiversity at the molecular level - Features an introduction focusing on epistemology and history - Provides a critical overview
One of the essential characteristics of living beings is the explosion of variety in their forms that is intrinsically linked to the diversity of the environments they have adapted to. This book, the result of collaboration between international specialists, analyzes the multiplicity of these morphologies. It explores the origin of forms, their role in defining living things, and the relationship between form and function. It exposes the role of genes and epigenetics and examines the forms of bacteria, protists and plants. The Explosion of Life Forms also studies the memory of animals and their sensory processes, the forms of robots (built in the image of living things), and medical technologies aimed at restoring damaged living forms. Finally, this work questions a common principle of construction in the diversity of forms, as well as the idea of an abandonment of the form, a possible hidden defect of some modern philosophies.
This review gathers astronomers, geologists, biologists, and chemists around a common question: how did life emerge on Earth? The ultimate goal is to probe an even more demanding question: is life universal? This not-so linear account highlights problems, gaps, and controversies. Discussion covers the formation of the solar system; the building of a habitable planet; prebiotic chemistry, biochemistry, and the emergence of life; the early Earth environment, and much more.
This volume explores the questions and answers surrounding the 'secret of life', combining approaches from the sciences, philosophy and theology, including the emerging discipline of astrobiology.
First comprehensive, beginning graduate level book on the emergent science of astrobiology.
The domestication of plants, animals and microorganisms has enabled the development of agriculture, animal husbandry, the processing of their products and, ultimately, civilizations. The species concerned by domestication, the regions of the world where it could take place, the clues that enable us to identify wild ancestors, the particularly morphological or physiological properties that characterize it, the modified genes, the genetic exchanges that domesticated organisms maintained with their wild ancestors, and the consequences of the structuring of the species that resulted in animal breeds or plant varieties, are all questions that develop studies in the fields of archaeology, sociology, ecology and genetics. Genetics of Domestications deals with the contribution of modern methods of genetic analysis and genomics to historical knowledge of domestications, their nature and diversity, based on examples of twelve species or groups of species.
Behind the neologism “ribozymes” lies a family of fascinating molecules, ribo-enzymes, which have been relatively little studied. These catalytically active RNAs are found in all strata of life, from viruses to the human genome. At the end of the 1970s, the discovery of a catalytic RNA nestled in an intron, followed by another involved in the maturation of transfer RNAs, led to the discovery of new ribozymes and the transition from a strictly “proteocentric” vision, inherited from the dogma of molecular biology, to a more “nucleocentric” one. Since then, a variety of ribozymes have been identified in genomes, where their functions often remain mysterious. Looking at Ribozymes traces the discovery of these molecules and presents a picture of their functional diversity, catalytic mechanisms and distribution within the tree of life.
Automatically evaluating the aesthetic qualities of a photograph is a current challenge for artificial intelligence technologies, yet it is also an opportunity to open up new economic and social possibilities. Aesthetics in Digital Photography presents theories developed over the last 25 centuries by philosophers and art critics, who have sometimes been governed by the objectivity of perception, and other times, of course, by the subjectivity of human judgement. It explores the advances that have been made in neuro-aesthetics and their current limitations. In the field of photography, this book puts aesthetic hypotheses up against experimental verification, and then critically examines attempts to “scientifically” measure this beauty. Special attention is paid to artificial intelligence techniques, taking advantage of machine learning methods and large databases.
This book explores how European naturalists and artists perceived, investigated, and presented the relationship between insects and colors from the late sixteenth to the late eighteenth century. The contributors to this volume examine the creative methods and strategies that were developed to record color-related information about insects through studies on Hoefnagel’s glazed metal and hand-coloring practices; the lepidochromy technique used in paintings by Marseus van Schriek and later naturalists; the representation of sexual dimorphism of color and variable color of caterpillars in the images of Goedaert, Merian, Albin, and Rösel von Rosenhof; the painting-by-numbers technique applied ...
- How did the Sun come into existence? - How was the Earth formed? - How long has Earth been the way it is now, with its combination of oceans and continents? - How do you define “life”? - How did the first life forms emerge? - What conditions made it possible for living things to evolve? All these questions are answered in this colourful textbook addressing undergraduate students in "Origins of Life" courses and the scientifically interested public. The authors take the reader on an amazing voyage through time, beginning five thousand million years ago in a cloud of interstellar dust and ending five hundred million years ago, when the living world that we see today was finally formed. A chapter on exoplanets provides an overview of the search for planets outside the solar system, especially for habitable ones. The appendix closes the book with a glossary, a bibliography of further readings and a summary of the Origins of the Earth and life in fourteen boxes.