You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally pr...
The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS
"From the shapes of clouds to dewdrops on a spider's web, this accessible book employs the mathematical concepts of symmetry to portray fascinating facets of the physical and biological world. More than 120 figures illustrate the interaction of symmetry with dynamics and the mathematical unity of nature's patterns"--
A classy rendering of chaos theory and symmetry mathematics illustrating recent understanding about the convergence between the two areas. Mathematicians Field and Golubitsky explain the relationship between chaos and symmetry, describing how chaotic process may eventually lead to symmetric patterns in a clear, understandable language and in color photographs reproducing computer images demonstrating the inherent pattern in apparent chaos. The authors compare these images with pictures from nature and art that, miraculously, mimic the computer patterns. Includes an appendix containing several BASIC programs enabling home computer owners to experiment with similar images. Annotation copyrighted by Book News, Inc., Portland, OR
Systems that generate new types of pattern such as discrete coupled systems, systems with global coupling, and combustion experiments were stressed, as were new types of pattern."--BOOK JACKET.
The latest developments on both the theory and applications of bifurcations with symmetry. The text includes recent experimental work as well as new approaches to and applications of the theory to other sciences. It shows the range of dissemination of the work of Martin Golubitsky and Ian Stewart and its influence in modern mathematics at the same time as it contains work of young mathematicians in new directions. The range of topics includes mathematical biology, pattern formation, ergodic theory, normal forms, one-dimensional dynamics and symmetric dynamics.
These world-renowned authors integrate linear algebra and ordinary differential equations in this unique book, interweaving instructions on how to use MATLAB® with examples and theory. They use computers in two ways: in linear algebra, computers reduce the drudgery of calculations to help students focus on concepts and methods; in differential equations, computers display phase portraits graphically for students to focus on the qualitative information embodied in solutions, rather than just to learn to develop formulas for solutions.
Symmetry is an immensely important concept in mathematics and throughout the sciences. In this Very Short Introduction, Ian Stewart highlights the deep implications of symmetry and its important scientific applications across the entire subject.
A retitled and revised edition of Ian Stewart's The Problem of Mathematics, this is the perfect guide to today's mathematics. Read about the latest discoveries, including Andrew Wile's amazing proof of Fermat's Last Theorem, the newest advances in knot theory, the Four Colour Theorem, Chaos Theory, and fake four-dimensial spaces. See how simple concepts from probability theory shed light on the National Lottery and tell you how to maximize your winnings. Discover howinfinitesimals become respectable, why there are different kinds of infinity, and how to square the circle with the mathematical equivalent of a pair of scissors.
Nonlinear dynamical systems and the formation of spatio-temporal patterns play an important role in current research on partial differential equations. This book contains articles on topics of current interest in applications of dynamical systems theory to problems of pattern formation in space and time. Topics covered include aspects of lattice dynamical systems, convection in fluid layers with large aspect ratios, mixed mode oscillations and canards, bacterial remediation of waste, gyroscopic systems, data clustering, and the second part of Hilbert's 16th problem. Most of the book consists of expository survey material, and so can serve as a source of convenient entry points to current research topics in nonlinear dynamics and pattern formation. This volume arose from a workshop held at the Fields Institute in December of 2003, honoring Professor William F. Langford's fundamental work on the occasion of his sixtieth birthday. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).