You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Students often find, in setting out to study algebraic geometry, that most of the serious textbooks on the subject require knowledge of ring theory, field theory, local rings and transcendental field extensions, and even sheaf theory. Often the expected background goes well beyond college mathematics. This book, aimed at senior undergraduates and graduate students, grew out of Miyanishi's attempt to lead students to an understanding of algebraic surfaces while presenting the necessary background along the way. Originally published in the Japanese in 1990, it presents a self-contained introduction to the fundamentals of algebraic geometry. This book begins with background on commutative algebras, sheaf theory, and related cohomology theory. The next part introduces schemes and algebraic varieties, the basic language of algebraic geometry. The last section brings readers to a point at which they can start to learn about the classification of algebraic surfaces.
This book is devoted to a systematic analysis of asymptotic behavior of distributions of various typical functionals of Gaussian random variables and fields. The text begins with an extended introduction, which explains fundamental ideas and sketches the basic methods fully presented later in the book. Good approximate formulas and sharp estimates of the remainders are obtained for a large class of Gaussian and similar processes. The author devotes special attention to the development of asymptotic analysis methods, emphasizing the method of comparison, the double-sum method and the method of moments. The author has added an extended introduction and has significantly revised the text for this translation, particularly the material on the double-sum method.
There are a number of very good books available on linear algebra. However, new results in linear algebra appear constantly, as do new, simpler, and better proofs of old results. Many of these results and proofs obtained in the past thirty years are accessible to undergraduate mathematics majors, but are usually ignored by textbooks. In addition, more than a few interesting old results are not covered in many books. In this book, the author provides the basics of linear algebra, with an emphasis on new results and on nonstandard and interesting proofs. The book features about 230 problems with complete solutions. It can serve as a supplementary text for an undergraduate or graduate algebra course.
This book discusses character theory and its applications to finite groups. The work places the subject within the reach of people with a relatively modest mathematical background. The necessary background exceeds the standard algebra course with respect only to finite groups. Starting with basic notions and theorems in character theory, the authors present a variety of results on the properties of complex-valued characters and applications to finite groups. The main themes are degrees and kernels of irreducible characters, the class number and the number of nonlinear irreducible characters, values of irreducible characters, characterizations and generalizations of Frobenius groups, and generalizations and applications of monomial groups. The presentation is detailed, and many proofs of known results are new. Most of the results in the book are presented in monograph form for the first time. Numerous exercises offer additional information on the topics and help readers to understand the main concepts and results.
The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in this volume are new and original which subsequently will provide fresh research problems to explore. This volume is suitable for graduate students and researchers in these areas.
This book develops, from the viewpoint of abstract group theory, a general theory of infinite-dimensional Lie groups involving the implicit function theorem and the Frobenius theorem. Omori treats as infinite-dimensional Lie groups all the real, primitive, infinite transformation groups studied by E. Cartan. The book discusses several noncommutative algebras such as Weyl algebras and algebras of quantum groups and their automorphism groups. The notion of a noncommutative manifold is described, and the deformation quantization of certain algebras is discussed from the viewpoint of Lie algebras. This edition is a revised version of the book of the same title published in Japanese in 1979.
This book is devoted to the geometry and arithmetic of elliptic curves and to elliptic functions with applications to algebra and number theory. It includes modern interpretations of some famous classical algebraic theorems such as Abel's theorem on the lemniscate and Hermite's solution of the fifth degree equation by means of theta functions. Suitable as a text, the book is self-contained and assumes as prerequisites only the standard one-year courses of algebra and analysis.
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, coverin...
This introduction to real analysis is based on a series of lectures by the author at Tohoku University. The text covers real numbers, the notion of general topology, and a brief treatment of the Riemann integral, followed by chapters on the classical theory of the Lebesgue integral on Euclidean spaces; the differentiation theorem and functions of bounded variation; Lebesgue spaces; distribution theory; the classical theory of the Fourier transform and Fourier series; and wavelet theory.
This book presents results onboundary-value problems for L and the theory of nonlinear perturbations of L. Specifically, necessary and sufficient solvability conditions in explicit form are found for various boundary-value problems for the operator L. an analog of the Weyl decomposition is proved.