You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concep...
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.
Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with eq...
This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.
An affine manifold is a manifold with torsion-free flat affine connection - a geometric topologist would define it as a manifold with an atlas of charts to the affine space with affine transition functions. This title is an in-depth examination of the decomposition and classification of radiant affine 3-manifolds - affine manifolds of the type that have a holonomy group consisting of affine transformations fixing a common fixed point.
This title examines the equivariant e-theory for c*-algebra, focusing on research carried out by Higson and Kasparov. Let A and B be C*-algebras which are equipped with continuous actions of a second countable, locally compact group G. We define a notion of equivariant asymptotic morphism, and use it to define equivariant E-theory groups EULG(A, B) which generalize the E-theory groups of Connes and Higson. We develop the basic properties of equivariant E-theory, including a composition product and six-term exact sequences in both variables, and apply our theory to the problem of calculating K-theory for group C*-algebras. Our main theorem gives a simple criterion for the assembly map of Baum and Connes to be an isomorphism. The result plays an important role in the work of Higson and Kasparov on the Bau m-Connes conjecture for groups which act isometrically and metrically properly on Hilbert space
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.
Introduction Lemmas on truncated group rings Groups of real quaternions Proof of the classification theorem Frobenius complements with core index 1 Frobenius complements with core index 4 Frobenius complements with core index 12 Frobenius complements with core index 24 Frobenius complements with core index 60 Frobenius complements with core index 120 Counting Frobenius complements Maximal orders Isomorphism classes of Frobenius groups with Abelian Frobenius kernel Concrete constructions of Frobenius groups Counting Frobenius groups with Abelian Frobenius kernel Isomorphism invariants for Frobenius complements Schur indices and finite subgroups of division rings Bibliography
This book is intended for graduate students and research mathematicians interested in topology and representation theory.