You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Fractals Everywhere, Second Edition covers the fundamental approach to fractal geometry through iterated function systems. This 10-chapter text is based on a course called "Fractal Geometry", which has been taught in the School of Mathematics at the Georgia Institute of Technology. After a brief introduction to the subject, this book goes on dealing with the concepts and principles of spaces, contraction mappings, fractal construction, and the chaotic dynamics on fractals. Other chapters discuss fractal dimension and interpolation, the Julia sets, parameter spaces, and the Mandelbrot sets. The remaining chapters examine the measures on fractals and the practical application of recurrent iterated function systems. This book will prove useful to both undergraduate and graduate students from many disciplines, including mathematics, biology, chemistry, physics, psychology, mechanical, electrical, and aerospace engineering, computer science, and geophysical science.
This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental concepts and algo rithms are not introduced and discussed in mathematical rigor we have made a serious at...
SuperFractals, first published in 2006, describes mathematics and algorithms for the first time in book form, with breathtaking colour pictures.
Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from t...
The Desktop Fractal Design Handbook is a four-chapter introductory text to fractal geometry. The underlying algorithms are derived from mathematics, which is reflected in the images they produce. Chapter 1 provides an overview of the products of the desktop fractal design system. Chapter 2 describes the installation and operation of hardware and operating system of the design system, along with its maintenance. Chapter 3 outlines the use of the desktop fractal design system, specifically on hot to design fractals on the fractal design screen, maps, paintings, and help screens. Chapter 4 focuses on the many practical applications of fractals. This book will be of value to mathematicians, engineers, graphic artists, teachers, and students.
Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.
Up-to-date text focuses on how fractal geometry can be used to model real objects in the physical world, with an emphasis on fractal applications. Includes solutions, hints, and a bonus CD.
From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theor...
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.