You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The proceedings of the Third Nikkei Econophysics Symposium, "Business Models in the 21st Century - Risk Management and Expectations for Econophysics," held in Tokyo in November 2004, are gathered herein. Cutting-edge research on the practical application of econophysics is included, covering such topics as the predictability of markets, the analysis of rare events, the mechanism of crashes and bubbles, markets’ correlation and risk management, investment strategy, stochastic market simulations, agent-based market simulations, wealth distribution, and network structures in economics, most of which are beyond the scope of standard financial technology. New market models and financial-data analysis methods are introduced, and dynamic aspects of markets and economy are highlighted. Professionals, researchers, and students will find an invaluable resource in this first book of its kind to summarize the latest work in the field of econophysics.
Econophysics is a newborn field of science bridging economics and physics. A special feature of this new science is the data analysis of high-precision market data. In economics arbitrage opportunity is strictly denied; however, by observing high-precision data we can prove the existence of arbitrage opportunity. Also, financial technology neglects the possibility of market prediction; however, in this book you can find many examples of predicted events. There are other surprising findings. This volume is the proceedings of a workshop on "application of econophysics" at which leading international researchers discussed their most recent results.
In recent years, as part of the increasing “informationization” of industry and the economy, enterprises have been accumulating vast amounts of detailed data such as high-frequency transaction data in nancial markets and point-of-sale information onindividualitems in theretail sector. Similarly,vast amountsof data arenow ava- able on business networks based on inter rm transactions and shareholdings. In the past, these types of information were studied only by economists and management scholars. More recently, however, researchers from other elds, such as physics, mathematics, and information sciences, have become interested in this kind of data and, based on novel empirical approaches t...
Computer and communication networks are among society's most important infrastructures. The internet, in particular, is a giant global network of networks without central control or administration. It is a paradigm of a complex system, where complexity may arise from different sources: topological structure, network evolution, connection and node diversity, or dynamical evolution. The present volume is the first book entirely devoted to the new and emerging field of nonlinear dynamics of TCP/IP networks. It addresses both scientists and engineers working in the general field of communication networks.
Ecosystems, the human brain, ant colonies, and economic networks are all complex systems displaying collective behaviour, or emergence, beyond the sum of their parts. Complexity science is the systematic investigation of these emergent phenomena, and stretches across disciplines, from physics and mathematics, to biological and social sciences. This introductory textbook provides detailed coverage of this rapidly growing field, accommodating readers from a variety of backgrounds, and with varying levels of mathematical skill. Part I presents the underlying principles of complexity science, to ensure students have a solid understanding of the conceptual framework. The second part introduces the key mathematical tools central to complexity science, gradually developing the mathematical formalism, with more advanced material provided in boxes. A broad range of end of chapter problems and extended projects offer opportunities for homework assignments and student research projects, with solutions available to instructors online. Key terms are highlighted in bold and listed in a glossary for easy reference, while annotated reading lists offer the option for extended reading and research.
Applied data-centric social sciences aim to develop both methodology and practical applications of various fields of social sciences and businesses with rich data. Specifically, in the social sciences, a vast amount of data on human activities may be useful for understanding collective human nature. In this book, the author introduces several mathematical techniques for handling a huge volume of data and analysing collective human behaviour. The book is constructed from data-oriented investigation, with mathematical methods and expressions used for dealing with data for several specific problems. The fundamental philosophy underlying the book is that both mathematical and physical concepts a...
There is no term that better describes the essential features of human society than complexity. On various levels, from the decision-making processes of individuals, through to the interactions between individuals leading to the spontaneous formation of groups and social hierarchies, up to the collective, herding processes that reshape whole societies, all these features share the property of irreducibility, i.e., they require a holistic, multi-level approach formed by researchers from different disciplines. This Special Issue aims to collect research studies that, by exploiting the latest advances in physics, economics, complex networks, and data science, make a step towards understanding t...
This book presents a systematic and coherent approach to phase transitions and critical phenomena, namely the coherent-anomaly method (CAM theory) based on cluster mean-field approximations. The first part gives a brief review of the CAM theory and the second part a collection of reprints covering the CAM basic calculations, the Blume-Emery-Griffiths model, the extended Baxter model, the quantum Heisenberg model, zero-temperature phase transitions, the KT-transition, spin glasses, the self-avoiding walk, contact processes, branching processes, the gas-liquid transition and even non-equilibrium phase transitions.
The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the ...
This extensive Handbook provides an in-depth exploration of the political economy dynamics associated with the international monetary and financial systems. Leading experts offer a fresh take on research into the interaction between system structure, t