You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
An important part of the science of complexity is the study of emergent properties arising through dynamical processes, in various natural and artificial systems. This book presents multidisciplinary approaches for creating and modeling representations of complex systems, and a variety of methods for extracting emergent structures. Offering bio-complexity examples, the coverage extends to self organization, synchronization, stability and robustness. The contributors include researchers in physics, engineering, biology and chemistry.
Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deducible from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developed along the chapters, are able to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.
This book reflects the outcome of contribution by the plural community and of the interactions between disciplines. With the mass of data available through Information and Communication Technologies (ICT) in an unprecedented quantity since the Human History, it is now possible to access dimensions of knowledge that, though not hidden, could not be grasped in the same way in the past. The question of how this information can be used for the benefit of institutional and economic actors to foster the development of a territory. Tackling the issue from a resolutely interdisciplinary perspective, the authors explore the theories and methods of complex systems in order to discuss how they can contribute in these new circumstances to territorial intelligence and to the development practices in which it is embodied. This book illustrates how today’s research explores the multiple facets of territorial systems in order to reproduce their richness. It invites readers to learn about the challenges, ideas, results and advances present in this domain.
William Faulkner continues to be an author who is widely read, studied, and admired. This book provides a new and interdisciplinary account of Faulkner's legacy, arguing that his fiction is just as relevant today as it was during his own time. Indeed, Faulkner's far-reaching critique of his Southern heritage speaks directly to the anti-racism discourse of our own time and engages the dire threat to subjecthood in a technologically saturated civilization. Combining literary critique with network and complexity science, this study offers a new reading of William Faulkner as a novelist for the information age. Over the course of his career, we find an artist struggling to articulate the threat to human wellbeing in rapidly scaling social systems and gradually developing a hard-won humanism that affirms the individual and interpersonal life as a source of novelty and social change.
This book is a printed edition of the Special Issue "Mathematical Analysis and Applications" that was published in Axioms
This volume presents a catalogue of over 2000 doctoral theses by Africans in all fields of mathematics, including applied mathematics, mathematics education and history of mathematics. The introduction contains information about distribution by country, institutions, period, and by gender, about mathematical density, and mobility of mathematicians. Several appendices are included (female doctorate holders, doctorates in mathematics education, doctorates awarded by African universities to non-Africans, doctoral theses by non-Africans about mathematics in Africa, activities of African mathematicians at the service of their communities). Paulus Gerdes compiled the information in his capacity of Chairman of the African Mathematical Union Commission for the History of Mathematics in Africa (AMUCHMA). The book contains a preface by Mohamed Hassan, President of the African Academy of Sciences (AAS) and Executive Director of the Academy of Sciences for the Developing World (TWAS). (383 pp.)
This is a book on interdisciplinary topics of the Mathematical and Biological Sciences. The treatment is both pedagogical and advanced in order to motivate research students as well as to fulfill the requirements of professional practitioners. There are comprehensive reviews written by senior experts on the important problems of growth and agglomeration in biology, on the algebraic modelling of the genetic code and on multi-step biochemical pathways.There are new results on the state of the art research in the pattern recognition of probability distribution of amino acids, on somitogenesis through reaction-diffusion models, on the mathematical modelling of infectious diseases, on the biophysical modelling of physiological disorders, on the sensitive analysis of parameters of malaria models, on the stability and hopf bifurcation of ecological and epidemiological models, on the viral infection of bee colonies and on the structure and motion of proteins. All these contributions are also strongly recommended to professionals from other scientific areas aiming to work on these interdisciplinary fields.
Florian Neukart describes methods for interpreting signals in the human brain in combination with state of the art AI, allowing for the creation of artificial conscious entities (ACE). Key methods are to establish a symbiotic relationship between a biological brain, sensors, AI and quantum hard- and software, resulting in solutions for the continuous consciousness-problem as well as other state of the art problems. The research conducted by the author attracts considerable attention, as there is a deep urge for people to understand what advanced technology means in terms of the future of mankind. This work marks the beginning of a journey – the journey towards machines with conscious action and artificially accelerated human evolution.
This book includes papers in cross-disciplinary applications of mathematical modelling: from medicine to linguistics, social problems, and more. Based on cutting-edge research, each chapter is focused on a different problem of modelling human behaviour or engineering problems at different levels. The reader would find this book to be a useful reference in identifying problems of interest in social, medicine and engineering sciences, and in developing mathematical models that could be used to successfully predict behaviours and obtain practical information for specialised practitioners. This book is a must-read for anyone interested in the new developments of applied mathematics in connection with epidemics, medical modelling, social issues, random differential equations and numerical methods.