You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 6th International Workshop on Multiple Classifier Systems, MCS 2005, held in Seaside, CA, USA in June 2005. The 42 revised full papers presented were carefully reviewed and are organized in topical sections on boosting, combination methods, design of ensembles, performance analysis, and applications. They exemplify significant advances in the theory, algorithms, and applications of multiple classifier systems – bringing the different scientific communities together.
The refereed proceedings of the 4th International Workshop on Multiple Classifier Systems, MCS 2003, held in Guildford, UK in June 2003. The 40 revised full papers presented with one invited paper were carefully reviewed and selected for presentation. The papers are organized in topical sections on boosting, combination rules, multi-class methods, fusion schemes and architectures, neural network ensembles, ensemble strategies, and applications
This book constitutes the refereed proceedings of the 5th International Workshop on Multiple Classifier Systems, MCS 2004, held in Cagliari, Italy in June 2004. The 35 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 50 submissions. The papers are organized in topical sections on bagging and boosting, combination methods, design methods, performance analysis, and applications.
In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.
There are more than one billion documents on the Web, with the count continually rising at a pace of over one million new documents per day. As information increases, the motivation and interest in data warehousing and mining research and practice remains high in organizational interest. The Encyclopedia of Data Warehousing and Mining, Second Edition, offers thorough exposure to the issues of importance in the rapidly changing field of data warehousing and mining. This essential reference source informs decision makers, problem solvers, and data mining specialists in business, academia, government, and other settings with over 300 entries on theories, methodologies, functionalities, and applications.
This book constitutes the proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2014; comprising the International Workshop on Structural and Syntactic Pattern Recognition, SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The total of 25 full papers and 22 poster papers included in this book were carefully reviewed and selected from 78 submissions. They are organized in topical sections named: graph kernels; clustering; graph edit distance; graph models and embedding; discriminant analysis; combining and selecting; joint session; metrics and dissimilarities; applications; partial supervision; and poster session.
Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of d...
Deep learning has achieved impressive results in image classification, computer vision, and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floatingpoint operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, Binary Neural Networks: Algorithms, Architectures, and Applications will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including par...
This volume constitutes the refereed proceedings of the Joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2012) and Statistical Techniques in Pattern Recognition (SPR 2012), held in Hiroshima, Japan, in November 2012 as a satellite event of the 21st International Conference on Pattern Recognition, ICPR 2012. The 80 revised full papers presented together with 1 invited paper and the Pierre Devijver award lecture were carefully reviewed and selected from more than 120 initial submissions. The papers are organized in topical sections on structural, syntactical, and statistical pattern recognition, graph and tree methods, randomized methods and image analysis, kernel methods in structural and syntactical pattern recognition, applications of structural and syntactical pattern recognition, clustering, learning, kernel methods in statistical pattern recognition, kernel methods in statistical pattern recognition, as well as applications of structural, syntactical, and statistical methods.