You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Optical coatings, i.e. multilayer stacks composed from a certain number of thin individual layers, are an essential part of any optical system necessary to tailor the properties of the optical surfaces. Hereby, the performance of any optical coating is defined by a well-balanced interplay between the properties of the individual coating materials and the geometrical parameters (such as film thickness) which define their arrangement. In all scientific books dealing with the performance of optical coatings, the main focus is on optimizing the geometrical coating parameters, particularly the number of individual layers and their thickness. At the same time, much less attention is paid to anothe...
Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and ...
Baumeister organizes this book around the key subjects associated with functions of optical thin film performance, and provides a valuable resource in the field of thin film technology. The information is widely backed up with citations to patents and published literature. The author draws from 25 years of experience teaching classes at the UCLA Extension Program, and at companies worldwide to answer questions, such as: what are the conventions for a given analysis formalism? and, what other design approaches have been tried for this application?
description not available right now.
Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films an...
Designed to give a concise but complete overview of the field, this book features contributions written by leading experts in the various areas. Topics include design, materials, film growth, deposition including large area, characterization and monitoring, and mechanical stress.
This book deals with the basic fundamentals, understanding, and design of optical thin films, or interference coatings for practical production. It focuses on one of the main subjects that is critical to meeting the practical challenges of producing optical coatings. This is the design of coatings, an understanding of which allows the practitioner to know the possibilities and limitations involved in reducing, enhancing, or otherwise controlling the reflection, transmission, and absorption of light (visible or otherwise). This Fifth Edition now includes measurement of index, thickness, and color; the determination of tooling factors; and the programming of Macros, Workbooks, and FilmStar Basic.
"Successful production of optical coatings, especially complex coatings with dozens or hundreds of layers, requires knowledge of the fundamentals of optical coating design, characterization, and monitoring. These topics are interconnected at the physical and mathematical levels. The primary goal of this book is to introduce the most important physical and mathematical concepts underlying state-of-the-art design, characterization, and monitoring techniques without the use of cumbersome mathematical derivations. The most comprehensive modern design approaches, including those based on the needle optimization and gradual evolution design techniques, as well as special design approaches used to solve specific design problems, such as the design of narrow band-pass filters, are discussed. Preproduction characterization of single thin films and postproduction characterization of manufactured optical coatings are also presented. Finally, the main types of monochromatic and broadband optical monitoring are covered, including the latest results of the error self-compensation effect associated with optical monitoring of coating production."--
Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers examine our current theoretical and experimental understanding. Beginning with the theory of thermal noise in mirrors and substrates, subsequent chapters discuss the technology of depositing coatings and state-of-the-art dielectric coating techniques used in precision measurement. Applications and remedies for noise reduction are also covered. Individual chapters are dedicated to specific fields where coating thermal noise is a particular concern, including the areas of quantum optics/optomechanics, gravitational wave detection, precision timing, high-precision laser stabilisation via optical cavities and cavity quantum electrodynamics. While providing full mathematical detail, the text avoids field-specific jargon, making it a valuable resource for readers with varied backgrounds in modern optics.
This book deals with the typical equipment, materials, processes, monitoring, and control used in the practical fabrication/production of optical thin films. It focuses on the practical elements needed to actually produce optical coatings.