Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

The Prevention and Treatment of Missing Data in Clinical Trials
  • Language: en
  • Pages: 163

The Prevention and Treatment of Missing Data in Clinical Trials

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participa...

The Prevention and Treatment of Missing Data in Clinical Trials
  • Language: en
  • Pages: 162

The Prevention and Treatment of Missing Data in Clinical Trials

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participa...

Clinical Trials with Missing Data
  • Language: en
  • Pages: 472

Clinical Trials with Missing Data

This book provides practical guidance for statisticians, clinicians, and researchers involved in clinical trials in the biopharmaceutical industry, medical and public health organisations. Academics and students needing an introduction to handling missing data will also find this book invaluable. The authors describe how missing data can affect the outcome and credibility of a clinical trial, show by examples how a clinical team can work to prevent missing data, and present the reader with approaches to address missing data effectively. The book is illustrated throughout with realistic case studies and worked examples, and presents clear and concise guidelines to enable good planning for missing data. The authors show how to handle missing data in a way that is transparent and easy to understand for clinicians, regulators and patients. New developments are presented to improve the choice and implementation of primary and sensitivity analyses for missing data. Many SAS code examples are included – the reader is given a toolbox for implementing analyses under a variety of assumptions.

Handbook of Missing Data Methodology
  • Language: en
  • Pages: 600

Handbook of Missing Data Methodology

  • Type: Book
  • -
  • Published: 2014-11-06
  • -
  • Publisher: CRC Press

Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three...

Missing Data in Clinical Studies
  • Language: en
  • Pages: 526

Missing Data in Clinical Studies

Missing Data in Clinical Studies provides a comprehensive account of the problems arising when data from clinical and related studies are incomplete, and presents the reader with approaches to effectively address them. The text provides a critique of conventional and simple methods before moving on to discuss more advanced approaches. The authors focus on practical and modeling concepts, providing an extensive set of case studies to illustrate the problems described. Provides a practical guide to the analysis of clinical trials and related studies with missing data. Examines the problems caused by missing data, enabling a complete understanding of how to overcome them. Presents conventional,...

Flexible Imputation of Missing Data, Second Edition
  • Language: en
  • Pages: 444

Flexible Imputation of Missing Data, Second Edition

  • Type: Book
  • -
  • Published: 2018-07-17
  • -
  • Publisher: CRC Press

Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the s...

Multiple Imputation of Missing Data Using SAS
  • Language: en
  • Pages: 328

Multiple Imputation of Missing Data Using SAS

Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail...

Preventing and Treating Missing Data in Longitudinal Clinical Trials
  • Language: en
  • Pages: 185

Preventing and Treating Missing Data in Longitudinal Clinical Trials

Focuses on the prevention and treatment of missing data in longitudinal clinical trials, looking at key principles and explaining analytic methods.

Modeling and Analysis of Longitudinal Data
  • Language: en
  • Pages: 362

Modeling and Analysis of Longitudinal Data

  • Type: Book
  • -
  • Published: 2024-02-20
  • -
  • Publisher: Elsevier

Longitudinal Data Analysis, Volume 50 in the Handbook of Statistics series covers how data consists of a series of repeated observations of the same subjects over an extended time frame and is thus useful for measuring change. Such studies and the data arise in a variety of fields, such as health sciences, genomic studies, experimental physics, sociology, sports and student enrollment in universities. For example, in health studies, intra-subject correlation of responses must be accounted for, covariates vary with time, and bias can arise if patients drop out of the study. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Modeling and Analysis of Longitudinal Data

Applied Pharmacometrics
  • Language: en
  • Pages: 570

Applied Pharmacometrics

  • Type: Book
  • -
  • Published: 2014-12-01
  • -
  • Publisher: Springer

This comprehensive volume provides an update on the current state of pharmacometrics in drug development. It consists of nineteen chapters all written by leading scientists from the pharmaceutical industry, regulatory agencies and academia. After an introduction of the basic pharmacokinetic and pharmacodynamic concepts of pharmacometrics in drug development, the book presents numerous examples of specific applications that utilize pharmacometrics with modeling and simulations over a variety of therapeutic areas, including pediatrics, diabetes, obesity, infections, psychiatrics, Alzheimer’s disease, and dermatology, among others. The examples illustrate how results from all phases of drug d...