Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Grid Homology for Knots and Links
  • Language: en
  • Pages: 423

Grid Homology for Knots and Links

Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a...

Frontiers in Geometry and Topology
  • Language: en
  • Pages: 320

Frontiers in Geometry and Topology

This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.

Singularities and Low Dimensional Topology
  • Language: en
  • Pages: 230

Singularities and Low Dimensional Topology

description not available right now.

The Projective Heat Map
  • Language: en
  • Pages: 210

The Projective Heat Map

This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar -gon and produces a new -gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.

Foundations of Arithmetic Differential Geometry
  • Language: en
  • Pages: 357

Foundations of Arithmetic Differential Geometry

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations
  • Language: en
  • Pages: 544

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations

In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is ex...

Homotopy of Operads and Grothendieck-Teichmuller Groups
  • Language: en
  • Pages: 581

Homotopy of Operads and Grothendieck-Teichmuller Groups

The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint o...

Introduction to 3-Manifolds
  • Language: en
  • Pages: 298

Introduction to 3-Manifolds

This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.

Knot Theory and Its Applications
  • Language: en
  • Pages: 376

Knot Theory and Its Applications

This volume contains the proceedings of the ICTS program Knot Theory and Its Applications (KTH-2013), held from December 10–20, 2013, at IISER Mohali, India. The meeting focused on the broad area of knot theory and its interaction with other disciplines of theoretical science. The program was divided into two parts. The first part was a week-long advanced school which consisted of minicourses. The second part was a discussion meeting that was meant to connect the school to the modern research areas. This volume consists of lecture notes on the topics of the advanced school, as well as surveys and research papers on current topics that connect the lecture notes with cutting-edge research in the broad area of knot theory.

Partial Dynamical Systems, Fell Bundles and Applications
  • Language: en
  • Pages: 330

Partial Dynamical Systems, Fell Bundles and Applications

Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsatura...