You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book covers a diverse range of topics in Mathematical Physics, linear and nonlinear PDEs. Though the text reflects the classical theory, the main emphasis is on introducing readers to the latest developments based on the notions of weak solutions and Sobolev spaces. In numerous problems, the student is asked to prove a given statement, e.g. to show the existence of a solution to a certain PDE. Usually there is no closed-formula answer available, which is why there is no answer section, although helpful hints are often provided. This textbook offers a valuable asset for students and educators alike. As it adopts a perspective on PDEs that is neither too theoretical nor too practical, it represents the perfect companion to a broad spectrum of courses.
This volume covers some of the most seminal research in the areas of mathematical analysis and numerical computation for nonlinear phenomena. Collected from the international conference held in honor of Professor Yoshikazu Giga’s 60th birthday, the featured research papers and survey articles discuss partial differential equations related to fluid mechanics, electromagnetism, surface diffusion, and evolving interfaces. Specific focus is placed on topics such as the solvability of the Navier-Stokes equations and the regularity, stability, and symmetry of their solutions, analysis of a living fluid, stochastic effects and numerics for Maxwell’s equations, nonlinear heat equations in critical spaces, viscosity solutions describing various kinds of interfaces, numerics for evolving interfaces, and a hyperbolic obstacle problem. Also included in this volume are an introduction of Yoshikazu Giga’s extensive academic career and a long list of his published work. Students and researchers in mathematical analysis and computation will find interest in this volume on theoretical study for nonlinear phenomena.
Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginnin...
description not available right now.
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.