You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
description not available right now.
description not available right now.
This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinary audience of researchers, practitioners, and graduate students.
A hands-on approach to quantitative reasoning in the life sciences Quantitative Biosciences establishes the quantitative principles of how living systems work across scales, drawing on classic and modern discoveries to present a case study approach that links mechanisms, models, and measurements. Each case study is organized around a central question in the life sciences: Are mutations dependent on selection? How do cells respond to fluctuating signals in the environment? How do organisms move in flocks given local sensing? How does the size of an epidemic depend on its initial speed of spread? Each question provides the basis for introducing landmark advances in the life sciences while teac...
A hands-on lab guide in the Python programming language that enables students in the life sciences to reason quantitatively about living systems across scales This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty....
A hands-on lab guide in the R programming language that enables students in the life sciences to reason quantitatively about living systems across scales This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty. Draw...
A hands-on lab guide in the MATLAB programming language that enables students in the life sciences to reason quantitatively about living systems across scales This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty....
Laura Levin is an Associate Professor of Theatre at York University, Toronto. She is Editor-in-Chief of Canadian Theatre Review and Editor of Theatre and Performance in Toronto (2011). --Book Jacket.
Programa del XLVII Congreso Nacional de la Sociedad Matemática Mexicana correspondiente al área de Biomatemáticas celebrado en la ciudad de Durango, Durango.
Organizational sustainability and uncertain economies are key topics for modern organizations. New, updated knowledge about such matters is necessary for companies to ensure they are sufficiently prepared for future crises. Additional research is required in this area as the overall amount of material available is below par. The Handbook of Research on Organizational Sustainability in Turbulent Economies provides theoretical and practical evidence that demonstrates how the integration, adaptation, construction, and application of strategic models, methods, and tools can promote organizational sustainability for economies in situations of uncertainty. Covering topics such as work engagement and sustainable development goals, this major reference work is ideal for academicians, practitioners, policymakers, entrepreneurs, business owners, researchers, instructors, and students.