You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The word tensegrity results from the contraction of 'tensional' and 'integrity', a word created by Richard Buckminster Fuller. He went on to describe tensegrity structures as 'islands of compression in an ocean of tension', and René Motro has developed a comprehensive definition which is 'systems in a stable self equilibriated system comprising a discontinuous set of compressed components inside a continuum of tensioned components'. This publication represents the life work of a leading exponent of a revolutionary and exciting method of structural design.* Represents the life work of a leading exponent of a revolutionary and exciting method of structural design* Applicable to architecture as an established structural system, can also be applied to other fields* Design professionals will be able to design better structures. Interested non-professionals will experience the great pleasure of being able to say "I understand why the Hisshorn tower stands up"
The structural morphology working group of the International Association for Shell and Spatial Structures, founded in 1991, has helped to launch several international seminars, newsletters and specific sessions of international conferences devoted to structural morphology. This book contains papers that have been selected either for their fundamental contribution to structural morphology or for their actual pertinence in the field. Polyhedral geometry, double-curved surfaces, biological structures, foldable systems, form-finding techniques, and free form design are some of the topics included in the contents of this book. The work presented in this book is the result of more than 15 years of...
„Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.
To facilitate a deeper understanding of tensegrity structures, this book focuses on their two key design problems: self-equilibrium analysis and stability investigation. In particular, high symmetry properties of the structures are extensively utilized. Conditions for self-equilibrium as well as super-stability of tensegrity structures are presented in detail. An analytical method and an efficient numerical method are given for self-equilibrium analysis of tensegrity structures: the analytical method deals with symmetric structures and the numerical method guarantees super-stability. Utilizing group representation theory, the text further provides analytical super-stability conditions for the structures that are of dihedral as well as tetrahedral symmetry. This book not only serves as a reference for engineers and scientists but is also a useful source for upper-level undergraduate and graduate students. Keeping this objective in mind, the presentation of the book is self-contained and detailed, with an abundance of figures and examples.
Deployable structures can vary their shape automatically from a compact, packaged configuration to an expanded, operational configuration. The first properly engineered deployable structures were used as stabilization booms on early spacecraft. Later on, more complex structures were devised for solar arrays, communication reflectors and telescopes. In other fields there have been a variety of developments, including retractable roofs for stadia, foldable components for cars, portable structures for temporary shelters and exhibition displays. Three main themes are discussed in this book: concepts, working principles, and mechanics of deployable structures, both in engineering and biology; in addition: theory of foldable bar structures and application to deployable tensegrieties; formulation of large-rotation analysis of deployable structures and finite-element simulation methods.
In this edited book various novel approaches to problems of current interest in civil engineering are demonstrated. The topics range from dynamic band seismic problems to the analysis of long-span structures and ancient buildings. Experts associated within the Lagrange Laboratory present recent research results on functionally-graded or composite materials, granular materials, geotechnics, as well as frictional or adhesive contact problems.
Lightweight structures and material optimized systems are of major relevance in the building industry and particularly in the design of concrete structures. This is not only for aesthetic reasons, but also to use material in a resource conserving way. The increase of strength characteristics, as one measure to reduce cross section dimensions, postulates the prefabrication of cementitious materials under laboratory conditions. This thesis examines the contradiction of the possibility to realize slender concrete elements and the complexity of the discontinued homogeneity arising from necessary segmentations. Proposals of implementation strategies are demonstrated and verified on the basis of selected case studies.
A COMPREHENSIVE GUIDE TO STRUCTURAL GLASS FACADES FOR ARCHITECTS, ENGINEERS, AND BUILDERS Once an experimental building form, structural glass facades have matured into a fully robust technology. Structural Glass Facades and Enclosures documents, defines, and categorizes the current state of the art in long-span glass facade design and construction, with a focus on structural systems, glass cladding options, and implementation strategies for innovative design. A comparative analysis of these various systems is included, along with designs and design practices for enhancing transparency; engineering issues; material, process, and fabrication considerations; installation means and methods; and...
The Kingdome, John (“Jack”) Christiansen’s best-known work, was the largest freestanding concrete dome in the world. Built amid public controversy, the multipurpose arena was designed to stand for a thousand years but was demolished in a great cloud of dust after less than a quarter century. Many know the fate of Seattle’s iconic dome, but fewer are familiar with its innovative structural engineer, Jack Christensen (1927–2017), and his significant contribution to Pacific Northwest and modernist architecture. Christiansen designed more than a hundred projects in the region: public schools and gymnasiums, sculptural church spaces, many of the Seattle Center’s 1962 World’s Fair bu...
Tensegrity structures are really intriguing: bars floating in the air, without any contact to a solid support, attached only by wires to other bars… that are also floating in the air! The aim of this work is to serve as an introduction to such an atypical kind of structure. It tries to explain everything about the controversial origins and polemic fatherhood; tensegrities from various fields, other than Architecture, structural principles, characteristics, advantages and weakness; precedent and current works and patents; and finally, some new proposals, proving that it is possible to find some applications to architectural and engineering purposes. In conclusion, this work tries to be a guide and reference to a new world of structural possibilities that is blooming and finding its path.