You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
A history of acoustics from the 19th century to the present, written by one of the pre-eminent members of the acoustical community. The book is both a review of the major scientific advances in acoustics as well as an account of famous acousticians and their discoveries, taking in the development of the Acoustical Society of America. Acoustics is distinguished by its interdisciplinary nature and the book duly explores the fields development in its relationship to other sciences. In addition to covering the history of acoustics, the book concludes with the future of acoustics. Beautifully illustrated.
Rewired begins with the claim that contemporary views of Christian spirituality, particularly in the American evangelical tradition, concentrate too exclusively on the interior and individual nature of spiritual experience. Paul Markham argues that a reexamination of the doctrine of religious conversion is needed within American evangelicalism and finds resources for such a model in the Wesleyan theological tradition and from philosophical and scientific insights into a "nonreductive physicalist" view of human nature. In considering "data" from theology and science, this book represents an integrated work in science and religion.
E.F.F. Chladni’s experiments and observations with sound and vibrations profoundly influenced the development of the field of Acoustics. The famous Chladni diagrams along with other observations are contained in Die Akustik, published in German in 1802 and Traité d’Acoustique, a greatly expanded version, published in French in 1809. This is the first comprehensive translation of the expanded French version of Traité d’Acoustique, using the 1802 German publication for reference and clarification. The translation was undertaken by Robert T. Beyer, PhD (1920-2008), noted acoustician, Professor of Physics at Brown University, and Gold Medal recipient of the Acoustical Society of America. Along with many other projects completed over the course of his career, Dr. Beyer translated Von Neumann’s seminal work, Mathematical Foundations of Quantum Mechanics from the original German, spent 30 years translating Russian physics treatises and journals, served as editor of the English translation of the Soviet Journal of Experimental and Theoretical Physics, and also authored Sounds of our Times: Two Hundred Years of Acoustics.
Quantum mechanics was still in its infancy in 1932 when the young John von Neumann, who would go on to become one of the greatest mathematicians of the twentieth century, published Mathematical Foundations of Quantum Mechanics--a revolutionary book that for the first time provided a rigorous mathematical framework for the new science. Robert Beyer's 1955 English translation, which von Neumann reviewed and approved, is cited more frequently today than ever before. But its many treasures and insights were too often obscured by the limitations of the way the text and equations were set on the page. In this new edition of this classic work, mathematical physicist Nicholas Wheeler has completely reset the book in TeX, making the text and equations far easier to read. He has also corrected a handful of typographic errors, revised some sentences for clarity and readability, provided an index for the first time, and added prefatory remarks drawn from the writings of Léon Van Hove and Freeman Dyson. The result brings new life to an essential work in theoretical physics and mathematics.
Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? In this Very Short Introduction Mike Goldsmith looks at the science of sound and explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, accoustic and electric, and hearing in humans and animals. He also considers the problem of sound out of place - noise and its reduction. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Rigorous and interdisciplinary perspective on the meaning and origin of the arrow of time, drawing on physics and its philosophy.
English is the language of science today. No matter which languages you know, if you want your work seen, studied, and cited, you need to publish in English. But that hasn’t always been the case. Though there was a time when Latin dominated the field, for centuries science has been a polyglot enterprise, conducted in a number of languages whose importance waxed and waned over time—until the rise of English in the twentieth century. So how did we get from there to here? How did French, German, Latin, Russian, and even Esperanto give way to English? And what can we reconstruct of the experience of doing science in the polyglot past? With Scientific Babel, Michael D. Gordin resurrects that ...
Provides a sustained account of how the thought of Aquinas may be used in conjunction with contemporary science to deepen our understanding of divine action and address such issues as creation, providence, prayer, and miracles.
Physical Acoustics: Principles and Methods, Volume VIII discusses a number of themes on physical acoustics that are divided into seven chapters. Chapter 1 describes the principles and applications of a tool for investigating phonons in dielectric crystals, the spin phonon spectrometer. The next chapter discusses the use of ultrasound in investigating Landau quantum oscillations in the presence of a magnetic field and their relation to the strain dependence of the Fermi surface of metals. The third chapter focuses on the ultrasonic measurements that are made by pulsing methods with velocities obtained through phase comparison methods and attenuations obtained through comparing pulse heights f...