Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Doing AI
  • Language: en
  • Pages: 273

Doing AI

Artificial intelligence (AI) has captured our imaginations—and become a distraction. Too many leaders embrace the oversized narratives of artificial minds outpacing human intelligence and lose sight of the original problems they were meant to solve. When businesses try to “do AI,” they place an abstract solution before problems and customers without fully considering whether it is wise, whether the hype is true, or how AI will impact their organization in the long term. Often absent is sound reasoning for why they should go down this path in the first place. Doing AI explores AI for what it actually is—and what it is not— and the problems it can truly solve. In these pages, author ...

Representation Discovery Using Harmonic Analysis
  • Language: en
  • Pages: 161

Representation Discovery Using Harmonic Analysis

"This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers into exploring this exciting area of research."--BOOK JACKET.

Visual Object Recognition
  • Language: en
  • Pages: 163

Visual Object Recognition

The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and ove...

A Concise Introduction to Models and Methods for Automated Planning
  • Language: en
  • Pages: 132

A Concise Introduction to Models and Methods for Automated Planning

Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, a...

Introduction to Semi-Supervised Learning
  • Language: en
  • Pages: 116

Introduction to Semi-Supervised Learning

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mi...

Autonomous Navigation in Dynamic Environments
  • Language: en
  • Pages: 176

Autonomous Navigation in Dynamic Environments

  • Type: Book
  • -
  • Published: 2007-10-14
  • -
  • Publisher: Springer

This book presents a foundation for a broad class of mobile robot mapping and navigation methodologies for indoor, outdoor, and exploratory missions. It addresses the challenging problem of autonomous navigation in dynamic environments, presenting new ideas and approaches in this emerging technical domain. Coverage discusses in detail various related challenging technical aspects and addresses upcoming technologies in this field.

Statistical Relational Artificial Intelligence
  • Language: en
  • Pages: 191

Statistical Relational Artificial Intelligence

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Lifelong Machine Learning, Second Edition
  • Language: en
  • Pages: 187

Lifelong Machine Learning, Second Edition

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past he...

Advances in Robot Learning
  • Language: en
  • Pages: 173

Advances in Robot Learning

This book constitutes the thoroughly refereed post-workshop proceedings of the 8th European Workshop on Learning Robots, EWLR'99, held in Lausanne, Switzerland in September 1999. The seven revised full workshop papers presented were carefully reviewed and selected for inclusion in the book. Also included are two invited full papers. Among the topics addressed are map building for robot navigation, multi-task reinforcement learning, neural network approaches, example-based learning, situated agents, planning maps for mobile robots, path finding, autonomous robots, and biologically inspired approaches.