Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Spectral Theory and Quantum Mechanics
  • Language: en
  • Pages: 962

Spectral Theory and Quantum Mechanics

  • Type: Book
  • -
  • Published: 2018-01-30
  • -
  • Publisher: Springer

This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."

Fundamental Mathematical Structures of Quantum Theory
  • Language: en
  • Pages: 345

Fundamental Mathematical Structures of Quantum Theory

  • Type: Book
  • -
  • Published: 2019-06-20
  • -
  • Publisher: Springer

This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are careful...

Spectral Theory and Quantum Mechanics
  • Language: en
  • Pages: 742

Spectral Theory and Quantum Mechanics

This book pursues the accurate study of the mathematical foundations of Quantum Theories. It may be considered an introductory text on linear functional analysis with a focus on Hilbert spaces. Specific attention is given to spectral theory features that are relevant in physics. Having left the physical phenomenology in the background, it is the formal and logical aspects of the theory that are privileged. Another not lesser purpose is to collect in one place a number of useful rigorous statements on the mathematical structure of Quantum Mechanics, including some elementary, yet fundamental, results on the Algebraic Formulation of Quantum Theories. In the attempt to reach out to Master's or PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book should benefit established researchers to organise and present the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.

Quantum Physics and Geometry
  • Language: en
  • Pages: 177

Quantum Physics and Geometry

  • Type: Book
  • -
  • Published: 2019-03-13
  • -
  • Publisher: Springer

This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.

Mathematical Foundations of Quantum Field Theory
  • Language: en
  • Pages: 396

Mathematical Foundations of Quantum Field Theory

"The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks. In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book"--Publisher's description

Advances in Algebraic Quantum Field Theory
  • Language: en
  • Pages: 460

Advances in Algebraic Quantum Field Theory

  • Type: Book
  • -
  • Published: 2015-09-04
  • -
  • Publisher: Springer

This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.

From Classical Mechanics To Quantum Field Theory, A Tutorial
  • Language: en
  • Pages: 255

From Classical Mechanics To Quantum Field Theory, A Tutorial

This book collects an extended version of the lectures delivered by the authors at the Fall Workshop on Geometry and Physics in the years 2014, 2015, 2016.It aims at introducing advanced graduate and PhD students, as well as young researchers, to current research in mathematics and physics. In particular, it fills the gap between the more physical-oriented and the more mathematical-oriented literature on quantum theory. It introduces various approaches to methods of quantization, along with their impact on modern mathematical methods.

Lectures On Symmetry-assisted Computation
  • Language: en
  • Pages: 649

Lectures On Symmetry-assisted Computation

Scientific problems have an internal 'beauty', called, referred to, precisely speaking, as their 'symmetry'. The symmetry arises, often, from the fact that the scientific problem refers to an object (a molecule, a crystal) and the object itself has some 'symmetry' elements, but in more abstract situations, such as those arising in particle physics and quantum technologies, symmetry is often the only known (and relevant!) fact about the problem. The scope of these Lecture Notes is to educate how to recognize the symmetry of a scientific problem and how to use symmetry to understand, manipulate and, finally, solve it. The principle guiding these Lecture Notes is that 'learning by doing' is the...

Geometry and Invariance in Stochastic Dynamics
  • Language: en
  • Pages: 273

Geometry and Invariance in Stochastic Dynamics

This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of ...

Hypercomplex Analysis: New Perspectives and Applications
  • Language: en
  • Pages: 228

Hypercomplex Analysis: New Perspectives and Applications

  • Type: Book
  • -
  • Published: 2014-10-10
  • -
  • Publisher: Springer

Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.