You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The present book is devoted to studying optimal experimental designs for a wide class of linear and nonlinear regression models. This class includes polynomial, trigonometrical, rational, and exponential models as well as many particular models used in ecology and microbiology. As the criteria of optimality, the well known D-, E-, and c-criteria are implemented. The main idea of the book is to study the dependence of optimal - signs on values of unknown parameters and on the bounds of the design interval. Such a study can be performed on the base of the Implicit Fu- tion Theorem, the classical result of functional analysis. The idea was ?rst introduced in the author’s paper (Melas, 1978) f...
This volume presents a selection of articles on statistical modeling and simulation, with a focus on different aspects of statistical estimation and testing problems, the design of experiments, reliability and queueing theory, inventory analysis, and the interplay between statistical inference, machine learning methods and related applications. The refereed contributions originate from the 10th International Workshop on Simulation and Statistics, SimStat 2019, which was held in Salzburg, Austria, September 2–6, 2019, and were either presented at the conference or developed afterwards, relating closely to the topics of the workshop. The book is intended for statisticians and Ph.D. students who seek current developments and applications in the field.
This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 – 2009 and the 7th workshop was held in Rimini, Italy, in 2013.
This volume contains the proceedings of the 8th Workshop on Model-Oriented Design and Analysis. It offers leading and pioneering work on optimal experimental designs, both from a mathematical/statistical point of view and with regard to real applications. Scientists from all over the world have contributed to this volume. Primary topics are designs for nonlinear models and applications to experimental medicine.
This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for c...
This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.
This book develops Doukhan/Louhichi's 1999 idea to measure asymptotic independence of a random process. The authors, who helped develop this theory, propose examples of models fitting such conditions: stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Applications are still needed to develop a method of analysis for nonlinear times series, and this book provides a strong basis for additional studies.
Time series play a crucial role in modern economies at all levels of activity and are used by decision makers to plan for a better future. Before publication time series are subject to statistical adjustments and this is the first statistical book to systematically deal with the methods most often applied for such adjustments. Regression-based models are emphasized because of their clarity, ease of application, and superior results. Each topic is illustrated with real case examples. In order to facilitate understanding of their properties and limitations of the methods discussed a real data example is followed throughout the book.
This revised book presents theoretical results relevant to Edgeworth and saddlepoint expansions to densities and distribution functions. It provides examples of their application in some simple and a few complicated settings, along with numerical, as well as asymptotic, assessments of their accuracy. Variants on these expansions, including much of modern likelihood theory, are discussed and applications to lattice distributions are extensively treated.
This volume contains the majority of the papers presented at the 5th Inter national Workshop on Model-Oriented Data Analysis held in June 1998. This series started in March 1987 with a meeting on the Wartburg, Eisenach (Germany). The next three meetings were in 1990 (St Kyrik monastery, Bulgaria), 1992 (Petrodvorets, StPetersburg, Russia) and 1995 (Spetses, Greece). The main purpose of these workshops was to bring together lead ing scientists from 'Eastern' and 'Western' Europe for the exchange of ideas in theoretical and applied statistics, with special emphasis on experimen tal design. Now that the separation between East and West has become less rigid, this dialogue has, in principle, bec...