You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
This book presents a detailed development of the divergence theorem. The framework is that of Lebesgue integration-no generalized Riemann integrals of Henstock-Kurzweil variety are involved. The first part of the book establishes the divergence theorem by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The second part introduces the sets of finite perimeter and the last part proves the general divergence theorem for bounded vector fields.
A detailed exposition of generalised Riemann-Stieltjes integrals.
Textbook on the theory of integration. Suitable for beginning graduate and final year undergraduate students.