Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Stochastic Modelling of Big Data in Finance
  • Language: en
  • Pages: 289

Stochastic Modelling of Big Data in Finance

  • Type: Book
  • -
  • Published: 2022-11-08
  • -
  • Publisher: CRC Press

Stochastic Modelling of Big Data in Finance provides a rigorous overview and exploration of stochastic modelling of big data in finance (BDF). The book describes various stochastic models, including multivariate models, to deal with big data in finance. This includes data in high-frequency and algorithmic trading, specifically in limit order books (LOB), and shows how those models can be applied to different datasets to describe the dynamics of LOB, and to figure out which model is the best with respect to a specific data set. The results of the book may be used to also solve acquisition, liquidation and market making problems, and other optimization problems in finance. Features Self-contai...

Random Dynamical Systems in Finance
  • Language: en
  • Pages: 354

Random Dynamical Systems in Finance

  • Type: Book
  • -
  • Published: 2016-04-19
  • -
  • Publisher: CRC Press

The theory and applications of random dynamical systems (RDS) are at the cutting edge of research in mathematics and economics, particularly in modeling the long-run evolution of economic systems subject to exogenous random shocks. Despite this interest, there are no books available that solely focus on RDS in finance and economics. Exploring this

Inhomogeneous Random Evolutions and Their Applications
  • Language: en
  • Pages: 253

Inhomogeneous Random Evolutions and Their Applications

  • Type: Book
  • -
  • Published: 2019-12-11
  • -
  • Publisher: CRC Press

Inhomogeneous Random Evolutions and Their Applications explains how to model various dynamical systems in finance and insurance with non-homogeneous in time characteristics. It includes modeling for: financial underlying and derivatives via Levy processes with time-dependent characteristics; limit order books in the algorithmic and HFT with counting price changes processes having time-dependent intensities; risk processes which count number of claims with time-dependent conditional intensities; multi-asset price impact from distressed selling; regime-switching Levy-driven diffusion-based price dynamics. Initial models for those systems are very complicated, which is why the author’s approa...

Change of Time Methods in Quantitative Finance
  • Language: en
  • Pages: 140

Change of Time Methods in Quantitative Finance

  • Type: Book
  • -
  • Published: 2016-05-31
  • -
  • Publisher: Springer

This book is devoted to the history of Change of Time Methods (CTM), the connections of CTM to stochastic volatilities and finance, fundamental aspects of the theory of CTM, basic concepts, and its properties. An emphasis is given on many applications of CTM in financial and energy markets, and the presented numerical examples are based on real data. The change of time method is applied to derive the well-known Black-Scholes formula for European call options, and to derive an explicit option pricing formula for a European call option for a mean-reverting model for commodity prices. Explicit formulas are also derived for variance and volatility swaps for financial markets with a stochastic volatility following a classical and delayed Heston model. The CTM is applied to price financial and energy derivatives for one-factor and multi-factor alpha-stable Levy-based models. Readers should have a basic knowledge of probability and statistics, and some familiarity with stochastic processes, such as Brownian motion, Levy process and martingale.

From Euclidean to Hilbert Spaces
  • Language: en
  • Pages: 368

From Euclidean to Hilbert Spaces

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces. The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations. The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

Traditional Functional-Discrete Methods for the Problems of Mathematical Physics
  • Language: en
  • Pages: 356

Traditional Functional-Discrete Methods for the Problems of Mathematical Physics

This book is devoted to the construction and study of approximate methods for solving mathematical physics problems in canonical domains. It focuses on obtaining weighted a priori estimates of the accuracy of these methods while also considering the influence of boundary and initial conditions. This influence is quantified by means of suitable weight functions that characterize the distance of an inner point to the boundary of the domain. New results are presented on boundary and initial effects for the finite difference method for elliptic and parabolic equations, mesh schemes for equations with fractional derivatives, and the Cayley transform method for abstract differential equations in Hilbert and Banach spaces. Due to their universality and convenient implementation, the algorithms discussed throughout can be used to solve a wide range of actual problems in science and technology. The book is intended for scientists, university teachers, and graduate and postgraduate students who specialize in the field of numerical analysis.

Random Motions in Markov and Semi-Markov Random Environments 1
  • Language: en
  • Pages: 257

Random Motions in Markov and Semi-Markov Random Environments 1

This book is the first of two volumes on random motions in Markov and semi-Markov random environments. This first volume focuses on homogenous random motions. This volume consists of two parts, the first describing the basic concepts and methods that have been developed for random evolutions. These methods are the foundational tools used in both volumes, and this description includes many results in potential operators. Some techniques to find closed-form expressions in relevant applications are also presented. The second part deals with asymptotic results and presents a variety of applications, including random motion with different types of boundaries, the reliability of storage systems and solutions of partial differential equations with constant coefficients, using commutative algebra techniques. It also presents an alternative formulation to the Black-Scholes formula in finance, fading evolutions and telegraph processes, including jump telegraph processes and the estimation of the number of level crossings for telegraph processes.

Random Motions in Markov and Semi-Markov Random Environments 2
  • Language: en
  • Pages: 224

Random Motions in Markov and Semi-Markov Random Environments 2

This book is the second of two volumes on random motions in Markov and semi-Markov random environments. This second volume focuses on high-dimensional random motions. This volume consists of two parts. The first expands many of the results found in Volume 1 to higher dimensions. It presents new results on the random motion of the realistic three-dimensional case, which has so far been barely mentioned in the literature, and deals with the interaction of particles in Markov and semi-Markov media, which has, in contrast, been a topic of intense study. The second part contains applications of Markov and semi-Markov motions in mathematical finance. It includes applications of telegraph processes in modeling stock price dynamics and investigates the pricing of variance, volatility, covariance and correlation swaps with Markov volatility and the same pricing swaps with semi-Markov volatilities.

Mathematics and Philosophy 2
  • Language: en
  • Pages: 276

Mathematics and Philosophy 2

From Pythagoreans to Hegel, and beyond, this book gives a brief overview of the history of the notion of graphs and introduces the main concepts of graph theory in order to apply them to philosophy. In addition, this book presents how philosophers can use various mathematical notions of order. Throughout the book, philosophical operations and concepts are defined through examining questions relating the two kinds of known infinities – discrete and continuous – and how Woodin's approach can influence elements of philosophy. We also examine how mathematics can help a philosopher to discover the elements of stability which will help to build an image of the world, even if various approaches (for example, negative theology) generally cannot be valid. Finally, we briefly consider the possibilities of weakening formal thought represented by fuzziness and neutrosophic graphs. In a nutshell, this book expresses the importance of graphs when representing ideas and communicating them clearly with others.

Random Evolutionary Systems
  • Language: en
  • Pages: 345

Random Evolutionary Systems

Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results.