Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1
  • Language: en
  • Pages: 452

Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1

Mathematical methods in engineering are characterized by a wide range of techniques for approaching various problems. Moreover, completely different analysis techniques can be applied to the same problem, which is justified by the difference in specific applications. Therefore, the study of the analyses and solutions of specific problems leads the researcher to generate their own techniques for the analysis of similar problems continuously arising in the process of technical development. Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications contains solutions to specific problems in current areas of computational engineering and cyberphysics.

Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms
  • Language: en
  • Pages: 276

Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms

This book illustrates a number of asymptotic and analytic approaches applied for the study of random evolutionary systems, and considers typical problems for specific examples. In this case, constructive mathematical models of natural processes are used, which more realistically describe the trajectories of diffusion-type processes, rather than those of the Wiener process. We examine models where particles have some free distance between two consecutive collisions. At the same time, we investigate two cases: the Markov evolutionary system, where the time during which the particle moves towards some direction is distributed exponentially with intensity parameter λ; and the semi-Markov evolutionary system, with arbitrary distribution of the switching process. Thus, the models investigated here describe the motion of particles with a finite speed and the proposed random evolutionary process with characteristics of a natural physical process: free run and finite propagation speed. In the proposed models, the number of possible directions of evolution can be finite or infinite.

Dynamics of Statistical Experiments
  • Language: en
  • Pages: 224

Dynamics of Statistical Experiments

This book is devoted to the system analysis of statistical experiments, determined by the averaged sums of sampling random variables. The dynamics of statistical experiments are given by difference stochastic equations with a speci?ed regression function of increments linear or nonlinear. The statistical experiments are studied by the sample volume increasing (N ??), as well as in discrete-continuous time by the number of stages increasing (k ??) for different conditions imposed on the regression function of increments. The proofs of limit theorems employ modern methods for the operator and martingale characterization of Markov processes, including singular perturbation methods. Furthermore, they justify the representation of a stationary Gaussian statistical experiment with the Markov property, as a stochastic difference equation solution, applying the theorem of normal correlation. The statistical hypotheses verification problem is formulated in the classification of evolutionary processes, which determine the dynamics of the predictable component. The method of stochastic approximation is used for classifying statistical experiments.

Traditional Functional-Discrete Methods for the Problems of Mathematical Physics
  • Language: en
  • Pages: 356

Traditional Functional-Discrete Methods for the Problems of Mathematical Physics

This book is devoted to the construction and study of approximate methods for solving mathematical physics problems in canonical domains. It focuses on obtaining weighted a priori estimates of the accuracy of these methods while also considering the influence of boundary and initial conditions. This influence is quantified by means of suitable weight functions that characterize the distance of an inner point to the boundary of the domain. New results are presented on boundary and initial effects for the finite difference method for elliptic and parabolic equations, mesh schemes for equations with fractional derivatives, and the Cayley transform method for abstract differential equations in Hilbert and Banach spaces. Due to their universality and convenient implementation, the algorithms discussed throughout can be used to solve a wide range of actual problems in science and technology. The book is intended for scientists, university teachers, and graduate and postgraduate students who specialize in the field of numerical analysis.

Mathematics and Philosophy 2
  • Language: en
  • Pages: 276

Mathematics and Philosophy 2

From Pythagoreans to Hegel, and beyond, this book gives a brief overview of the history of the notion of graphs and introduces the main concepts of graph theory in order to apply them to philosophy. In addition, this book presents how philosophers can use various mathematical notions of order. Throughout the book, philosophical operations and concepts are defined through examining questions relating the two kinds of known infinities – discrete and continuous – and how Woodin's approach can influence elements of philosophy. We also examine how mathematics can help a philosopher to discover the elements of stability which will help to build an image of the world, even if various approaches (for example, negative theology) generally cannot be valid. Finally, we briefly consider the possibilities of weakening formal thought represented by fuzziness and neutrosophic graphs. In a nutshell, this book expresses the importance of graphs when representing ideas and communicating them clearly with others.

The Theory of Distributions
  • Language: en
  • Pages: 308

The Theory of Distributions

Many physical, chemical, biological and even economic phenomena can be modeled by differential or partial differential equations, and the framework of distribution theory is the most efficient way to study these equations. A solid familiarity with the language of distributions has become almost indispensable in order to treat these questions efficiently. This book presents the theory of distributions in as clear a sense as possible while providing the reader with a background containing the essential and most important results on distributions. Together with a thorough grounding, it also provides a series of exercises and detailed solutions. The Theory of Distributions is intended for master’s students in mathematics and for students preparing for the agrégation certification in mathematics or those studying the physical sciences or engineering.

Asymptotic Analyses for Complex Evolutionary Systems with Markov and Semi-Markov Switching Using Approximation Schemes
  • Language: en
  • Pages: 240

Asymptotic Analyses for Complex Evolutionary Systems with Markov and Semi-Markov Switching Using Approximation Schemes

This book analyzes stochastic evolutionary models under the impulse of diffusion, as well as Markov and semi-Markov switches. Models are investigated under the conditions of classical and non-classical (Levy and Poisson) approximations in addition to jumping stochastic approximations and continuous optimization procedures. Among other asymptotic properties, particular attention is given to weak convergence, dissipativity, stability and the control of processes and their generators. Weak convergence of stochastic processes is usually proved by verifying two conditions: the tightness of the distributions of the converging processes, which ensures the existence of a converging subsequence, and the uniqueness of the weak limit. Achieving the limit can be done on the semigroups that correspond to the converging process as well as on appropriate generators. While this provides the convergence of generators, a natural question arises concerning the uniqueness of a limit semigroup.

Continuous Functions
  • Language: en
  • Pages: 272

Continuous Functions

This book is the second of a set dedicated to the mathematical tools used in partial differential equations derived from physics. It presents the properties of continuous functions, which are useful for solving partial differential equations, and, more particularly, for constructing distributions valued in a Neumann space. The author examines partial derivatives, the construction of primitives, integration and the weighting of value functions in a Neumann space. Many of them are new generalizations of classical properties for values in a Banach space. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students – doctoral students, postgraduate students – engineers and researchers, without restricting or generalizing the results.

From Euclidean to Hilbert Spaces
  • Language: en
  • Pages: 368

From Euclidean to Hilbert Spaces

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces. The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations. The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

Martingales and Financial Mathematics in Discrete Time
  • Language: en
  • Pages: 242

Martingales and Financial Mathematics in Discrete Time

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time. The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors. Martingales and Financial Mathematics in Discrete Time is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance