You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
One of the current challenges and failures of immunotherapy is in part due to the complex tumor microenvironment (TME) that provides a formidable barrier to immune infiltration and function. The TME consists of various cell types (tumor cells, fibroblasts, endothelial cells, and immune cells), soluble signaling molecules (cytokines, growth factors, and chemokines), and extracellular matrix. On another note, metabolic disturbances in various TME components, such as hypoxia, acidosis, lactate accumulation, and nutrient deprivation, can play a critical role in the tumor progression. Furthermore, genetic and epigenetic dysfunctions are known to be part of the characteristics of cancer development. The immune cells could have a pro- or anti-tumor role in the TME, and their activity might vary in the context of different cancers. Both innate and adaptive immune cells interact with tumor cells through direct contact or through chemokines and cytokines signaling, shaping the tumor's activity and response to therapy.
Nanotheranostics is a recent medical field which integrates diagnostic imaging protocols and therapeutic functions to monitor real time drug release in the body and distribution to the target site. The combined processes allow technicians to observe the effectiveness of a specifically designed drug candidate and predict its possible side effects. All these features help clinicians in optimizing treatment options for cancer and other diseases for the individual patient. Current research is tailored to individual therapy because each drug may display a variety of responses depending on variations in an individual’s genetics and subsequently, their clinical biochemistry. Many tumors are still...
The use of different foods, herbs, and spices to treat or prevent disease has been recorded for thousands of years. Egyptian papyrus, hieroglyphics and ancient texts from the Middle East have described the cultivation and preparations of herbs and botanicals to “cure the sick.” There are even older records from China and India. Some ancient scripts describe the use of medicinal plants which have never been seen within European cultures. Indeed, all ancient civilizations have pictorial records of different foods, herbs, and spices being used for medical purposes. However, there are fundamental questions pertaining to the scientific evidence for the use of these agents or their extracts in...
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of Springer Nature’s longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the 18th volume of a continuing series.
Due to the lack of secure, efficient, and patient-friendly therapies for neurodegenerative disorders, there is a rising demand for innovative approaches. Despite the limited number of nanocarriers approved for human use, they have demonstrated significant potential in preclinical and, in some instances, clinical trials. In alignment with this objective, the chapters of the book are structured to offer a comprehensive overview of recent advancements in medication and dosage form development, specifically emphasizing the nanoparticulate system for targeting the brain. This book aims to furnish readers with a thorough understanding of the clinical application of nanocarrier systems for treating...
description not available right now.
We are delighted to present the Frontiers in Oncology "Women in Gynecological Oncology” Volume III series of article collections. At present, less than 30% of researchers worldwide are women. Long-standing biases and gender stereotypes are discouraging girls and women away from science-related fields, and STEM research in particular. Science and gender equality are, however, essential to ensure sustainable development as highlighted by UNESCO. In order to change traditional mindsets, gender equality must be promoted, stereotypes defeated, and girls and women should be encouraged to pursue STEM careers. Therefore, Frontiers in Oncology is proud to offer this platform to promote the work of women scientists, across all fields of Oncology. The work presented here highlights the diversity of research performed across the entire breadth of Oncology research and presents advances in theory, experiment, and methodology with applications to compelling problems.
At present, less than 30% of researchers worldwide are women. Long-standing biases and gender stereotypes are discouraging girls and women away from science-related fields, and STEM research in particular. Science and gender equality are, however, essential to ensure sustainable development as highlighted by UNESCO. In order to change traditional mindsets, gender equality must be promoted, stereotypes defeated, and girls and women should be encouraged to pursue STEM careers. Therefore, Frontiers in Immunology is proud to offer this platform to promote the work of women scientists, across all fields of Cancer Immunity and Immunotherapy.
Breast cancer is the most common tumor in females worldwide. Cancer epigenetics and metabolic reprogramming are known cancer hallmarks. Recent advances in the field of epigenetics include histone modification, DNA methylation, and non-coding RNAs. In contrast to genetic modifications, epigenetics refers to a set of dynamic alterations. By controlling the on and off states of oncogenes and tumor suppressor genes, as well as re-engineering the tumor microenvironment, epigenetics plays a crucial role in the initiation and progression of carcinogenesis. Additionally, the complex process of metabolic reprogramming is required for both malignant transformation and tumor development, including invasion and metastasis. Furthermore, reprogrammed metabolic activities have been utilized to diagnose, monitor, and treat cancer patients. In tumor tissues, metabolic heterogeneity was found to take a role in the adaptation to the microenvironment drastic changes resulting from current therapeutic modalities.