You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply ...
This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
This book presents asymptotic methods for boundary-value problems (linear and semilinear, elliptic and parabolic) in so-called thick multi-level junctions. These complicated structures appear in a large variety of applications. A concise and readable introduction to the topic, the book provides a full review of the literature as well as a presentation of results of the authors, including the homogenization of boundary-value problems in thick multi-level junctions with non-Lipschitz boundaries, and the construction of approximations for solutions to semilinear problems. Including end-of-chapter conclusions discussing the results and their physical interpretations, this book will be of interest to researchers and graduate students in asymptotic analysis and applied mathematics as well as to physicists, chemists and engineers interested in processes such as heat and mass transfer.
This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.
This book offers a structured algebraic and geometric approach to the classification and construction of quantum codes for topological quantum computation. It combines key concepts in linear algebra, algebraic topology, hyperbolic geometry, group theory, quantum mechanics, and classical and quantum coding theory to help readers understand and develop quantum codes for topological quantum computation. One possible approach to building a quantum computer is based on surface codes, operated as stabilizer codes. The surface codes evolved from Kitaev's toric codes, as a means to developing models for topological order by using qubits distributed on the surface of a toroid. A significant advantage...
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
This book reviews the field of helioseismology and its outstanding challenges and also offers a detailed discussion of the latest computational methodologies. The focus is on the development and implementation of techniques to create 3-D images of convection and magnetism in the solar interior and to introduce the latest computational and theoretical methods to the interested reader. With the increasing availability of computational resources, demand for greater accuracy in the interpretation of helioseismic measurements and the advent of billion-dollar instruments taking high-quality observations, computational methods of helioseismology that enable probing the 3-D structure of the Sun have increasingly become central. This book will benefit students and researchers with proficiency in basic numerical methods, differential equations and linear algebra who are interested in helioseismology.
This monograph requires basic knowledge of the variational theory of elliptic PDE and the techniques used for the analysis of the Finite Element Method. However, all the tools for the analysis of FEM (scaling arguments, finite dimensional estimates in the reference configuration, Piola transforms) are carefully introduced before being used, so that the reader does not need to go over longforgotten textbooks. Readers include: computational mathematicians, numerical analysts, engineers and scientists interested in new and computationally competitive Discontinuous Galerkin methods. The intended audience includes graduate students in computational mathematics, physics, and engineering, since the prerequisites are quite basic for a second year graduate student who has already taken a non necessarily advanced class in the Finite Element method.