Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Earthquake Statistical Analysis through Multi-state Modeling
  • Language: en
  • Pages: 196

Earthquake Statistical Analysis through Multi-state Modeling

Earthquake occurrence modeling is a rapidly developing research area. This book deals with its critical issues, ranging from theoretical advances to practical applications. The introductory chapter outlines state-of-the-art earthquake modeling approaches based on stochastic models. Chapter 2 presents seismogenesis in association with the evolving stress field. Chapters 3 to 5 present earthquake occurrence modeling by means of hidden (semi-)Markov models and discuss associated characteristic measures and relative estimation aspects. Further comparisons, the most important results and our concluding remarks are provided in Chapters 6 and 7.

Reliability Engineering
  • Language: en
  • Pages: 200

Reliability Engineering

  • Type: Book
  • -
  • Published: 2018-10-03
  • -
  • Publisher: CRC Press

Reliability theory is a multidisciplinary science aimed at developing complex systems that are resistant to failures. Reliability engineering has emerged as a main field not only for scientists and researchers, but also for engineers and industrial managers. This book covers the recent developments in reliability engineering. It presents new theoretical issues that were not previously published, as well as the solutions of practical problems and case studies illustrating the applications methodology. This book is written by a number of leading scientists, analysts, mathematicians, statisticians, and engineers who have been working on the front end of reliability science and engineering. Reli...

Applied Reliability Engineering and Risk Analysis
  • Language: en
  • Pages: 449

Applied Reliability Engineering and Risk Analysis

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-stat...

Statistical Topics and Stochastic Models for Dependent Data with Applications
  • Language: en
  • Pages: 288

Statistical Topics and Stochastic Models for Dependent Data with Applications

This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.

Martingales and Financial Mathematics in Discrete Time
  • Language: en
  • Pages: 242

Martingales and Financial Mathematics in Discrete Time

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time. The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors. Martingales and Financial Mathematics in Discrete Time is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Introduction to Matrix-Analytic Methods in Queues 2
  • Language: en
  • Pages: 453

Introduction to Matrix-Analytic Methods in Queues 2

Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book's approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix-Analytic Methods in Queues 2 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. This book's detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.

Random Motions in Markov and Semi-Markov Random Environments 1
  • Language: en
  • Pages: 256

Random Motions in Markov and Semi-Markov Random Environments 1

This book is the first of two volumes on random motions in Markov and semi-Markov random environments. This first volume focuses on homogenous random motions. This volume consists of two parts, the first describing the basic concepts and methods that have been developed for random evolutions. These methods are the foundational tools used in both volumes, and this description includes many results in potential operators. Some techniques to find closed-form expressions in relevant applications are also presented. The second part deals with asymptotic results and presents a variety of applications, including random motion with different types of boundaries, the reliability of storage systems and solutions of partial differential equations with constant coefficients, using commutative algebra techniques. It also presents an alternative formulation to the Black-Scholes formula in finance, fading evolutions and telegraph processes, including jump telegraph processes and the estimation of the number of level crossings for telegraph processes.

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences
  • Language: en
  • Pages: 275

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.

Continuous Functions
  • Language: en
  • Pages: 272

Continuous Functions

This book is the second of a set dedicated to the mathematical tools used in partial differential equations derived from physics. It presents the properties of continuous functions, which are useful for solving partial differential equations, and, more particularly, for constructing distributions valued in a Neumann space. The author examines partial derivatives, the construction of primitives, integration and the weighting of value functions in a Neumann space. Many of them are new generalizations of classical properties for values in a Banach space. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students – doctoral students, postgraduate students – engineers and researchers, without restricting or generalizing the results.

The Theory of Distributions
  • Language: en
  • Pages: 308

The Theory of Distributions

Many physical, chemical, biological and even economic phenomena can be modeled by differential or partial differential equations, and the framework of distribution theory is the most efficient way to study these equations. A solid familiarity with the language of distributions has become almost indispensable in order to treat these questions efficiently. This book presents the theory of distributions in as clear a sense as possible while providing the reader with a background containing the essential and most important results on distributions. Together with a thorough grounding, it also provides a series of exercises and detailed solutions. The Theory of Distributions is intended for master’s students in mathematics and for students preparing for the agrégation certification in mathematics or those studying the physical sciences or engineering.